Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists describe new African monkey genus – first in 83 years

12.05.2006


Researchers from around the world teamed up to make discovery; Only specimen part of Field Museum collections


Skull of Rungwecebus kipunji, the first new genus of a living primate from Africa to be identified in the past 83 years.



For the first time in 83 years, scientists have identified a new genus of a living primate from Africa, according to research to be published by Science May 11 in the online Science Express.

"This is exciting news because it shows that the ’age of discovery’ is by no means over," says William Stanley, a co-author of the study and mammal Collection Manager at The Field Museum, where the world’s only specimen of this forest-dwelling monkey "resides" in the museum’s vast collections.


"Finding a new genus of the best-studied group of living mammals is a sobering reminder of how much we have to learn about our planet’s biodiversity," notes Link Olson, another co-author and Mammals Curator at the University of Alaska Museum.

The new African monkey, Rungwecebus kipunji (rhung-way-CEE-bus key-POON-gee), was first described scientifically last year based only on photographs. At that time, scientists placed the reclusive monkey in the genus Lophocebus, commonly known as mangabeys.

Shortly thereafter, one of these monkeys died in a farmer’s trap. As a result, a team of scientists, organized by Tim Davenport of the Wildlife Conservation Society, was able to study the specimen’s physical characteristics and analyze tissue samples on a molecular level. Their research has concluded that Kipunji (its common name) belongs to an entirely new genus.

Kipunji have light-to-medium grayish brown fur, with off-white fur on the belly and the end of their long, mainly curled-up tail. They have a "crown" made up of a very broad crest of long, erect hair. Adults make a distinctive, loud, low-pitched honk-bark. An omnivore, Kipunji eat leaves, shoots, flowers, bark, fruit, lichen, moss and invertebrates.

These predominantly arboreal monkeys are endemic to Tanzania and known to live in only two high-altitude locations: the Rungwe-Livingstone forest (16 groups) and Ndundulu Forest Reserve (three groups). They live in social groups of 30-36 adult males and females, with no evidence of any solitary animals.

Worldwide collaboration

The research behind the new findings was remarkably collaborative, drawing on the expertise of a team of scientists spread around the world. Davenport, the lead author, Daniela De Luca, Noah Mpunga and Sophy Machaga, also co-authors, work for the Wildlife Conservation Society and are founders of the Southern Highlands Conservation Programme based in Tanzania. Another co-author, Eric Sargis, is a primatologist in the Anthropology department at Yale University, while co-author Link Olson is the Mammals Curator at the University of Alaska Museum.

"This study is a textbook example of how a variety of individuals and institutions spanning the globe can work together to significantly improve our understanding of the biodiversity of this planet," Stanley says. "Within hours of Sophy Machaga creeping through the rain-soaked forests of Rungwe documenting the behavior of a troop of Kipunji, Link Olson of University of Alaska Museum was trudging through the snow in 20-degrees-below-zero weather to his molecular lab in Fairbanks, more than 8,500 miles away."

The molecular data recovered from muscle tissue and analyzed in detail by Olson shows Kipunji is most closely related to baboons in the genus Papio, and not to Lophocebus, the genus to which Kipunji was originally assigned. The in-depth analysis involved five different genes, including genes passed only from mother to offspring and from father to male offspring. "Had we gotten these surprising results based on a single gene, we’d have been pretty skeptical," Olson says, "but each of the genes we analyzed either firmly supported the grouping of Kipunji with baboons or failed to support a close relationship between Kipunji and other mangabeys."

Meanwhile, Sargis flew to Chicago with only a week’s notice to work with Stanley on the skull of the only specimen of Kipunji. They used the Field Museum’s extensive primate collection to compare Kipunji with other primates and found that the skull and external features of the specimen do not exhibit the diagnostic morphological features of baboons: namely, a long rostrum or deep depressions on the outside of the lower jaw. Also, depressions under the orbits of the Kipunji skull are much different than those of baboons, mandrills, and geladas.

Given the results of the molecular and morphological analyses, the team placed Kipunji in its own genus Rungwecebus, named after Mt. Rungwe where Kipunji was first observed.

Unfortunately, the forest home of this new monkey is fragmented and vulnerable. Logging, charcoal making, poaching and unmanaged resource extraction are common. Without intervention, both forests will be further fragmented, the authors note in their paper. The main predators of Kipunji are crowned eagles and possibly leopards. But humans also hunt and kill Kipunji, and eat their meat.

"Any hunting of the Kipunji or loss of its vulnerable habitat, with the latter probably increasing the frequency of the former, will further serve to threaten this important new genus," the authors conclude.

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>