Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies substances in grapefruit juice that interact dangerously with some drugs

10.05.2006


New research from the University of North Carolina at Chapel Hill has identified and established the substance in grapefruit juice that causes potentially dangerous interactions with certain medications.



For almost a decade, people have been told by their doctors and pharmacists to avoid grapefruit juice if they are being treated with certain medications, including some drugs that control blood pressure or lower cholesterol. Studies have shown that grapefruit juice can cause more of these drugs to enter the blood stream, resulting in undesirable and even dangerous side effects.

The drugs affected by grapefruit juice usually have some difficulty entering the body after they are consumed because an intestinal enzyme, CYP3A, partially destroys them as they are absorbed. Grapefruit juice, but not other commonly consumed fruit juices, inhibits this enzyme, allowing more of these drugs to enter the body.


It was originally assumed that the ingredients responsible for drug interactions were the flavonoids that give grapefruit juice its bitter taste.

The new study shows that a group of chemicals called furanocoumarins are the likely culprit.

"This is the best evidence to date that furanocoumarins are the active ingredients in grapefruit juice that cause the interaction with medications," said Dr. Paul Watkins, the Dr. Verne S. Caviness distinguished professor of medicine and director of UNC’s General Clinical Research Center (GCRC). Watkins led the study team.

A report of the new findings appears in the May issue of the American Journal of Clinical Nutrition.

To determine whether furanocoumarins are responsible for grapefruit juice-drug interactions, Watkins worked with scientists at the Florida Department of Citrus to selectively remove only the furanocoumarins from the juice. He and his collaborators then studied the effect of the whole juice versus furanocoumarin-free juice on the ability to affect absorption of felodipine, an anti-hypertension drug known to interact with grapefruit juice "And we found that removing the furanocoumarins from grapefruit juice entirely got rid of this interaction," Watkins said.

In this randomized study, 18 healthy volunteers took 10 milligrams of felodipine with each of three juices: orange juice, regular grapefruit juice, and grapefruit juice devoid of furanocoumarins. Blood was collected over 24 hours to measure felodipine blood levels. One week elapsed between each felodipine-juice "treatment."

The study found that in contrast to whole grapefruit juice, the furanocoumarin-free grapefruit juice behaved like orange juice and did not cause an interaction with felodipine.

Watkins notes that there are several implications of this work.

"First, it should now be possible to market the furanocoumarin-free grapefruit juice to patients who would otherwise need to avoid grapefruit. In addition, it should be possible to screen new foods for the potential for drug interactions by determining whether they contain furanocoumarins.

"Finally, it may be possible to add furanocoumarins to formulations of certain drugs that tend to be poorly or erratically absorbed to improve their oral delivery."

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>