Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Online calculator and chemotherapy order systems reduce medication errors in children

09.05.2006


Two new studies from the Johns Hopkins Children’s Center show that computerizing ordering of chemotherapy and other types of intravenous drug infusions for children greatly reduces the risk of potentially dangerous medical errors.



An online infusion calculator and a computerized drug ordering system, developed under the leadership of Christoph Lehmann, M.D., director of clinical information technology at the Children’s Center, have been in use there for about three years, but this is the first time that researchers have measured their impact on medication errors.

Children in general are three times more likely than adults to be victims of medication errors because both ordering and dosing are more complex in children than adults, according to Lehmann. In children, dosing is based on calculations factoring in age, height and weight, and miscalculations and rounding errors could cause life-threatening harm. Dosing errors also cause more ill effects in children because still-developing bodies absorb, metabolize and excrete drugs at different rates than adults and thus have lower tolerance for medication overdose. Children undergoing treatment for cancer are at even greater risk because the general dangers of potent chemicals are compounded by the dosing challenges.


"Our findings reveal that using a Web-based calculator makes it less likely to order and give a child the wrong dose or commit other errors, such as omitting patient information, weight parameters or infusion rates," explains Lehmann, lead author of the Web-based calculator study, which appears in the May 8 issue of Pediatric Critical Care Medicine. "Our calculator stops ordering errors before they can even reach the pharmacy, let alone the patient."

The calculator computes all doses, advises and warns of drug interactions and automatically offers "default" doses and drug dilutions to help doctors avoid overdosing and under-dosing.

For the study, researchers compared handwritten and calculator-generated orders before and after the online calculator was put into use. Twenty-seven percent of handwritten orders were incorrect, with an error rate of 45 errors per every 100 written orders. By contrast, 94 percent of the calculator-generated orders were correct, with an error rate of 6 per 100. The most frequent errors in handwritten orders were wrong dosage and wrong concentration, both of which are considered high-risk errors. None of the calculator-generated orders contained such errors.

To measure the effect of the computerized provider order entry system (CPOE) on pediatric chemotherapy orders, researchers compared 1,259 handwritten orders to 1,116 electronic orders, finding that chemotherapy orders generated with CPOE were less likely to contain dose miscalculations and had fewer omissions of cumulative doses, which is the maximum dose of a medication that can be safely given to a patient over a specific time period. Computerized orders were also less likely to have incomplete nurse safety checklists. Researchers estimate that the computerized system prevented 17 to 18 such errors per every 100 chemotherapy orders.

"Most of these errors may have been caught by pharmacists or nurses before they could have hurt a patient," emphasized Lehmann, "But we wanted to prevent providers from making errors in the first place because some of them may reach the patient."

The chemotherapy order system uses calculators that automatically adjust dosage to the patient’s age and weight, thus eliminating the need for complex calculations and reducing the risk of calculation errors. The program reduces the need for handwritten information and free text by forcing providers to make selections from a dropdown menu.

On a cautionary note, researchers found the risk for mismatching medication orders to treatment plans was slightly higher with the use of the electronic chemo order system, probably because current versions do not allow users to match a specific drug order to a recommended one, and because new or experimental drugs do not appear on the system’s dropdown menu. This shortcoming will be eliminated after a hospital-wide adoption of a new computer provider order entry system in the near future, researchers say.

"One of the important lessons from this study is that machines alone do not prevent errors, and, in fact, may initially introduce new potential hazards," says co-investigator Robert Arceci, M.D., director of pediatric oncology for The Johns Hopkins Kimmel Cancer Center, where more than 200 children receive cancer treatment each year. "It takes a whole culture of safety and vigilance to prevent errors."

However, the tradeoffs of correct dosing, legible orders and adherence to safety procedures all outweigh the negative effects, researchers say.

Because pediatric chemotherapy is such a complex process, it was crucial for researchers to know exactly where mistakes were most likely to occur before they designed the program. To do so, Lehmann and colleagues used a model called failure modes and effects analysis (FMEA), originally developed by the military. FMEA analysis showed researchers what kinds of errors occurred, where they were most likely to occur and what the potential for harm was. The most frequent errors were misidentification of patients and entering incorrect patient information, such as weight and height. Less frequent were dosage miscalculations and dosing errors due to mismatching drug orders to chemotherapy protocols. Lehmann designed the software application in a manner that precision-targeted these areas.

Based on these findings, researchers recommend the adoption of digitized systems for intravenous drug infusions, as well as chemotherapy orders, in high-risk clinical areas, such as pediatric oncology centers, pediatric intensive care units and emergency rooms.

"What we found extends well beyond pediatric oncology and has potential application in all areas of medicine," says George Kim, M.D., lead author of the chemotherapy study, adjunct faculty in The Johns Hopkins University School of Nursing and faculty in the Division of Health Sciences Informatics. "This system is part of a whole new culture of safety that requires not only change in the system, but also change in the mindset."

Co-investigators in the chemotherapy study included Allen Chen, M.D., professor of pediatric oncology at The Johns Hopkins Kimmel Cancer Center, Sandra Mithcell, R.Ph., of The Johns Hopkins Hospital, and Michelle Kokoszka, R.N., and Denise Daniel, R.N., of the Johns Hopkins Children’s Center.

Co-investigators in the online calculator study were George Kim, M.D., instructor of nursing at the Johns Hopkins University School of Medicine; Marlene Miller, M.D., associate professor of pediatrics and director of the Children’s Center Quality and Safety Initiative; and Renmeet Gujral, Pharm.D., Michael Veltri, Pharm.D., and John Clark, Pharm.D., of the Department of Pediatric Pharmacy.

Katerina Pesheva | EurekAlert!
Further information:
http://www.hopkinschildrens.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>