Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Online calculator and chemotherapy order systems reduce medication errors in children

09.05.2006


Two new studies from the Johns Hopkins Children’s Center show that computerizing ordering of chemotherapy and other types of intravenous drug infusions for children greatly reduces the risk of potentially dangerous medical errors.



An online infusion calculator and a computerized drug ordering system, developed under the leadership of Christoph Lehmann, M.D., director of clinical information technology at the Children’s Center, have been in use there for about three years, but this is the first time that researchers have measured their impact on medication errors.

Children in general are three times more likely than adults to be victims of medication errors because both ordering and dosing are more complex in children than adults, according to Lehmann. In children, dosing is based on calculations factoring in age, height and weight, and miscalculations and rounding errors could cause life-threatening harm. Dosing errors also cause more ill effects in children because still-developing bodies absorb, metabolize and excrete drugs at different rates than adults and thus have lower tolerance for medication overdose. Children undergoing treatment for cancer are at even greater risk because the general dangers of potent chemicals are compounded by the dosing challenges.


"Our findings reveal that using a Web-based calculator makes it less likely to order and give a child the wrong dose or commit other errors, such as omitting patient information, weight parameters or infusion rates," explains Lehmann, lead author of the Web-based calculator study, which appears in the May 8 issue of Pediatric Critical Care Medicine. "Our calculator stops ordering errors before they can even reach the pharmacy, let alone the patient."

The calculator computes all doses, advises and warns of drug interactions and automatically offers "default" doses and drug dilutions to help doctors avoid overdosing and under-dosing.

For the study, researchers compared handwritten and calculator-generated orders before and after the online calculator was put into use. Twenty-seven percent of handwritten orders were incorrect, with an error rate of 45 errors per every 100 written orders. By contrast, 94 percent of the calculator-generated orders were correct, with an error rate of 6 per 100. The most frequent errors in handwritten orders were wrong dosage and wrong concentration, both of which are considered high-risk errors. None of the calculator-generated orders contained such errors.

To measure the effect of the computerized provider order entry system (CPOE) on pediatric chemotherapy orders, researchers compared 1,259 handwritten orders to 1,116 electronic orders, finding that chemotherapy orders generated with CPOE were less likely to contain dose miscalculations and had fewer omissions of cumulative doses, which is the maximum dose of a medication that can be safely given to a patient over a specific time period. Computerized orders were also less likely to have incomplete nurse safety checklists. Researchers estimate that the computerized system prevented 17 to 18 such errors per every 100 chemotherapy orders.

"Most of these errors may have been caught by pharmacists or nurses before they could have hurt a patient," emphasized Lehmann, "But we wanted to prevent providers from making errors in the first place because some of them may reach the patient."

The chemotherapy order system uses calculators that automatically adjust dosage to the patient’s age and weight, thus eliminating the need for complex calculations and reducing the risk of calculation errors. The program reduces the need for handwritten information and free text by forcing providers to make selections from a dropdown menu.

On a cautionary note, researchers found the risk for mismatching medication orders to treatment plans was slightly higher with the use of the electronic chemo order system, probably because current versions do not allow users to match a specific drug order to a recommended one, and because new or experimental drugs do not appear on the system’s dropdown menu. This shortcoming will be eliminated after a hospital-wide adoption of a new computer provider order entry system in the near future, researchers say.

"One of the important lessons from this study is that machines alone do not prevent errors, and, in fact, may initially introduce new potential hazards," says co-investigator Robert Arceci, M.D., director of pediatric oncology for The Johns Hopkins Kimmel Cancer Center, where more than 200 children receive cancer treatment each year. "It takes a whole culture of safety and vigilance to prevent errors."

However, the tradeoffs of correct dosing, legible orders and adherence to safety procedures all outweigh the negative effects, researchers say.

Because pediatric chemotherapy is such a complex process, it was crucial for researchers to know exactly where mistakes were most likely to occur before they designed the program. To do so, Lehmann and colleagues used a model called failure modes and effects analysis (FMEA), originally developed by the military. FMEA analysis showed researchers what kinds of errors occurred, where they were most likely to occur and what the potential for harm was. The most frequent errors were misidentification of patients and entering incorrect patient information, such as weight and height. Less frequent were dosage miscalculations and dosing errors due to mismatching drug orders to chemotherapy protocols. Lehmann designed the software application in a manner that precision-targeted these areas.

Based on these findings, researchers recommend the adoption of digitized systems for intravenous drug infusions, as well as chemotherapy orders, in high-risk clinical areas, such as pediatric oncology centers, pediatric intensive care units and emergency rooms.

"What we found extends well beyond pediatric oncology and has potential application in all areas of medicine," says George Kim, M.D., lead author of the chemotherapy study, adjunct faculty in The Johns Hopkins University School of Nursing and faculty in the Division of Health Sciences Informatics. "This system is part of a whole new culture of safety that requires not only change in the system, but also change in the mindset."

Co-investigators in the chemotherapy study included Allen Chen, M.D., professor of pediatric oncology at The Johns Hopkins Kimmel Cancer Center, Sandra Mithcell, R.Ph., of The Johns Hopkins Hospital, and Michelle Kokoszka, R.N., and Denise Daniel, R.N., of the Johns Hopkins Children’s Center.

Co-investigators in the online calculator study were George Kim, M.D., instructor of nursing at the Johns Hopkins University School of Medicine; Marlene Miller, M.D., associate professor of pediatrics and director of the Children’s Center Quality and Safety Initiative; and Renmeet Gujral, Pharm.D., Michael Veltri, Pharm.D., and John Clark, Pharm.D., of the Department of Pediatric Pharmacy.

Katerina Pesheva | EurekAlert!
Further information:
http://www.hopkinschildrens.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>