Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that ancient genes dictate flowering, fall bud set

05.05.2006


It often requires many years of growth before a tree is ready to flower -- a delay that makes tree breeders impatient. Now, scientists at universities in Sweden and the United States have discovered genes that are responsible for initiation of flowering.



In the annual plant Arabidopsis, the first plant to have its genome sequenced, the genes Constans (CO) and Flowering Locus T (FT) induce flowering in response to day length. It turns out that Populus trees (aspens, cottonwoods, poplars), the first tree to have been sequenced, also have CO and FT genes and can be forced to flower in months, rather than years.

The discovery is being reported in Science magazine on-line (Science Express www.sciencexpress.org) on May 4, 2006, in the article, "The Conserved CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees," by Henrik Bohlenius, Tao Huang, Laurence Charbonnel-Campaa, and Ove Nilsson of the Umea Plant Science Centre at the Swedish University of Agricultural Sciences; Amy M. Brunner of the forestry department at Virginia Tech; Stefan Jansson of the Umea Plant Science Centre at Umea University; and Steven H. Strauss of the forest science department at Oregon State University.


"In this study, we looked at a poplar homolog of the gene FT, which has been shown to regulate flowering in annual plants. Surprisingly, we found that this gene not only controls the multi-year delay in flowering in trees, but also controls seasonal growth cessation and bud set," said Nilsson, the corresponding author of the study.

The Swedish scientists over expressed FT in poplar, and observed normal flowers on six month old trees -- in a tree species that ordinarily takes 8 to 20 years to flower.

Why does it take trees so many years to flower? Brunner and Strauss -- who have been doing research to make genetically engineered trees sterile so that they cannot cross with wild trees -- used consecutive years of poplar clones to study the multi-year delay in flowering. The Science paper reports their discovery that the expression of the FT gene increases with age. "This gradual increase might be part of the mechanism by which trees become adults," Brunner said.

The Umea Plant Centre scientists also looked at the genetics that signal fall growth cessation and bud set in trees. They discovered that CO accumulates in response to long days and initiates the formation of FT, and in the short days of fall, the pattern of CO accumulation changes so that FT is not activated.

They also observed that the same species of tree at different latitudes will respond to local conditions in order to become dormant before the risk of frost damage. Because the short daylengths occurring in fall induce bud set, the scientists wondered if FT and CO also controlled this process. When they grew trees originating from different latitudes in Europe in a growth chamber, the Umea Plant Centre team observed that "This response is under strong genetic control and is maintained when trees are moved," the article reports.

However, they did observe that levels of CO and FT genes could be made to respond to artificially imposed day length. Most importantly, they observed that under the same day length, CO and FT levels accumulated differently in trees from northern latitudes compared to those from southern latitudes. Because winter arrives earlier at northern latitudes, trees need to set bud and enter dormancy earlier than trees at more southern latitudes.

The article concludes that the CO and FT genetic pathway is key to understanding adaptation to climate change, as well as to speeding tree breeding.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>