Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that ancient genes dictate flowering, fall bud set

05.05.2006


It often requires many years of growth before a tree is ready to flower -- a delay that makes tree breeders impatient. Now, scientists at universities in Sweden and the United States have discovered genes that are responsible for initiation of flowering.



In the annual plant Arabidopsis, the first plant to have its genome sequenced, the genes Constans (CO) and Flowering Locus T (FT) induce flowering in response to day length. It turns out that Populus trees (aspens, cottonwoods, poplars), the first tree to have been sequenced, also have CO and FT genes and can be forced to flower in months, rather than years.

The discovery is being reported in Science magazine on-line (Science Express www.sciencexpress.org) on May 4, 2006, in the article, "The Conserved CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees," by Henrik Bohlenius, Tao Huang, Laurence Charbonnel-Campaa, and Ove Nilsson of the Umea Plant Science Centre at the Swedish University of Agricultural Sciences; Amy M. Brunner of the forestry department at Virginia Tech; Stefan Jansson of the Umea Plant Science Centre at Umea University; and Steven H. Strauss of the forest science department at Oregon State University.


"In this study, we looked at a poplar homolog of the gene FT, which has been shown to regulate flowering in annual plants. Surprisingly, we found that this gene not only controls the multi-year delay in flowering in trees, but also controls seasonal growth cessation and bud set," said Nilsson, the corresponding author of the study.

The Swedish scientists over expressed FT in poplar, and observed normal flowers on six month old trees -- in a tree species that ordinarily takes 8 to 20 years to flower.

Why does it take trees so many years to flower? Brunner and Strauss -- who have been doing research to make genetically engineered trees sterile so that they cannot cross with wild trees -- used consecutive years of poplar clones to study the multi-year delay in flowering. The Science paper reports their discovery that the expression of the FT gene increases with age. "This gradual increase might be part of the mechanism by which trees become adults," Brunner said.

The Umea Plant Centre scientists also looked at the genetics that signal fall growth cessation and bud set in trees. They discovered that CO accumulates in response to long days and initiates the formation of FT, and in the short days of fall, the pattern of CO accumulation changes so that FT is not activated.

They also observed that the same species of tree at different latitudes will respond to local conditions in order to become dormant before the risk of frost damage. Because the short daylengths occurring in fall induce bud set, the scientists wondered if FT and CO also controlled this process. When they grew trees originating from different latitudes in Europe in a growth chamber, the Umea Plant Centre team observed that "This response is under strong genetic control and is maintained when trees are moved," the article reports.

However, they did observe that levels of CO and FT genes could be made to respond to artificially imposed day length. Most importantly, they observed that under the same day length, CO and FT levels accumulated differently in trees from northern latitudes compared to those from southern latitudes. Because winter arrives earlier at northern latitudes, trees need to set bud and enter dormancy earlier than trees at more southern latitudes.

The article concludes that the CO and FT genetic pathway is key to understanding adaptation to climate change, as well as to speeding tree breeding.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>