Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover that ancient genes dictate flowering, fall bud set

05.05.2006


It often requires many years of growth before a tree is ready to flower -- a delay that makes tree breeders impatient. Now, scientists at universities in Sweden and the United States have discovered genes that are responsible for initiation of flowering.



In the annual plant Arabidopsis, the first plant to have its genome sequenced, the genes Constans (CO) and Flowering Locus T (FT) induce flowering in response to day length. It turns out that Populus trees (aspens, cottonwoods, poplars), the first tree to have been sequenced, also have CO and FT genes and can be forced to flower in months, rather than years.

The discovery is being reported in Science magazine on-line (Science Express www.sciencexpress.org) on May 4, 2006, in the article, "The Conserved CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees," by Henrik Bohlenius, Tao Huang, Laurence Charbonnel-Campaa, and Ove Nilsson of the Umea Plant Science Centre at the Swedish University of Agricultural Sciences; Amy M. Brunner of the forestry department at Virginia Tech; Stefan Jansson of the Umea Plant Science Centre at Umea University; and Steven H. Strauss of the forest science department at Oregon State University.


"In this study, we looked at a poplar homolog of the gene FT, which has been shown to regulate flowering in annual plants. Surprisingly, we found that this gene not only controls the multi-year delay in flowering in trees, but also controls seasonal growth cessation and bud set," said Nilsson, the corresponding author of the study.

The Swedish scientists over expressed FT in poplar, and observed normal flowers on six month old trees -- in a tree species that ordinarily takes 8 to 20 years to flower.

Why does it take trees so many years to flower? Brunner and Strauss -- who have been doing research to make genetically engineered trees sterile so that they cannot cross with wild trees -- used consecutive years of poplar clones to study the multi-year delay in flowering. The Science paper reports their discovery that the expression of the FT gene increases with age. "This gradual increase might be part of the mechanism by which trees become adults," Brunner said.

The Umea Plant Centre scientists also looked at the genetics that signal fall growth cessation and bud set in trees. They discovered that CO accumulates in response to long days and initiates the formation of FT, and in the short days of fall, the pattern of CO accumulation changes so that FT is not activated.

They also observed that the same species of tree at different latitudes will respond to local conditions in order to become dormant before the risk of frost damage. Because the short daylengths occurring in fall induce bud set, the scientists wondered if FT and CO also controlled this process. When they grew trees originating from different latitudes in Europe in a growth chamber, the Umea Plant Centre team observed that "This response is under strong genetic control and is maintained when trees are moved," the article reports.

However, they did observe that levels of CO and FT genes could be made to respond to artificially imposed day length. Most importantly, they observed that under the same day length, CO and FT levels accumulated differently in trees from northern latitudes compared to those from southern latitudes. Because winter arrives earlier at northern latitudes, trees need to set bud and enter dormancy earlier than trees at more southern latitudes.

The article concludes that the CO and FT genetic pathway is key to understanding adaptation to climate change, as well as to speeding tree breeding.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>