Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormones may affect how brain listens

05.05.2006


From zebra fish to humans, reproductive hormones govern behavioral responses to courtship signals. A new Emory University study conducted in songbirds suggests that hormones may also modulate the way the auditory system processes courtship signals. In other words, hormones may affect how the birds actually listen to courtship songs at certain times of the year when it’s time to reproduce.



Like many animals, songbirds put on their reproductive song and dance routine each spring: Male birds perform their finest songs, and female birds respond, hormonally prepped for the breeding season. In this research, Emory neuroscientist Donna Maney examined the auditory areas of the brain to see how estrogen affects the selectivity of song-induced gene expression. Dubbed the "genomic response," this is a highly specific process wherein genes are turned on to perform as they’re programmed.

"Our work suggests that estrogen, which is normally high only during the breeding season, may actually alter auditory pathways and centers," Maney says. "The changes in gene expression reflect changes in the brain that are related to auditory learning and attention."


In the study, published in the current issue of the European Journal of Neuroscience, Maney and her research group compared estrogen-treated female white-throated sparrows with females not treated with hormones. The birds listened to recordings of either seductive male song or synthetic, frequency-matched beeps.

The birds reacted as expected to the songs, with the hormone-treated females responding by performing their mating moves -- known as "copulation solicitation" -- whereas the untreated females remained unimpressed and did not respond with courtship displays. Both groups essentially ignored the beeps. Although the genomic response in the auditory systems of the hormone-treated females was much higher in response to song than to beeps, as expected, in the untreated females it was the same for the songs and synthetic beeps, making no differentiation between the two.

The most interesting result was the pattern of genomic responses across groups. "The main difference between estrogen-treated and untreated birds was not that estrogen increased the response to song. Rather, estrogen decreased the response to beeps. This decrease could be a mechanism for tuning out what is not relevant, allowing the birds to focus on the signals important for breeding," Maney says.

In the big picture, the results of their work may indicate how hormones affect sensory processing in general. "Our results fit with studies showing that women’s preferences for masculine faces, voices and body odors change over the menstrual cycle, as hormones are changing," she says. "What we’ve started to uncover here is a possible neural substrate for such hormone-induced changes."

Maney is an assistant professor of psychology and a member of the Graduate Program in Neuroscience at Emory. She is a recipient of the Presidential Early Career Award for Scientists and Engineers (2004), and her research is funded by a CAREER award from the National Science Foundation. Coauthors of the paper include Emory researchers Chris Goode and Ellen Cho.

Beverly Cox Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>