Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormones may affect how brain listens

05.05.2006


From zebra fish to humans, reproductive hormones govern behavioral responses to courtship signals. A new Emory University study conducted in songbirds suggests that hormones may also modulate the way the auditory system processes courtship signals. In other words, hormones may affect how the birds actually listen to courtship songs at certain times of the year when it’s time to reproduce.



Like many animals, songbirds put on their reproductive song and dance routine each spring: Male birds perform their finest songs, and female birds respond, hormonally prepped for the breeding season. In this research, Emory neuroscientist Donna Maney examined the auditory areas of the brain to see how estrogen affects the selectivity of song-induced gene expression. Dubbed the "genomic response," this is a highly specific process wherein genes are turned on to perform as they’re programmed.

"Our work suggests that estrogen, which is normally high only during the breeding season, may actually alter auditory pathways and centers," Maney says. "The changes in gene expression reflect changes in the brain that are related to auditory learning and attention."


In the study, published in the current issue of the European Journal of Neuroscience, Maney and her research group compared estrogen-treated female white-throated sparrows with females not treated with hormones. The birds listened to recordings of either seductive male song or synthetic, frequency-matched beeps.

The birds reacted as expected to the songs, with the hormone-treated females responding by performing their mating moves -- known as "copulation solicitation" -- whereas the untreated females remained unimpressed and did not respond with courtship displays. Both groups essentially ignored the beeps. Although the genomic response in the auditory systems of the hormone-treated females was much higher in response to song than to beeps, as expected, in the untreated females it was the same for the songs and synthetic beeps, making no differentiation between the two.

The most interesting result was the pattern of genomic responses across groups. "The main difference between estrogen-treated and untreated birds was not that estrogen increased the response to song. Rather, estrogen decreased the response to beeps. This decrease could be a mechanism for tuning out what is not relevant, allowing the birds to focus on the signals important for breeding," Maney says.

In the big picture, the results of their work may indicate how hormones affect sensory processing in general. "Our results fit with studies showing that women’s preferences for masculine faces, voices and body odors change over the menstrual cycle, as hormones are changing," she says. "What we’ve started to uncover here is a possible neural substrate for such hormone-induced changes."

Maney is an assistant professor of psychology and a member of the Graduate Program in Neuroscience at Emory. She is a recipient of the Presidential Early Career Award for Scientists and Engineers (2004), and her research is funded by a CAREER award from the National Science Foundation. Coauthors of the paper include Emory researchers Chris Goode and Ellen Cho.

Beverly Cox Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>