Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology may find disease before it starts

26.04.2006


Nanotechnology may one day help physicians detect the very earliest stages of serious diseases like cancer, a new study suggests.



It would do so by improving the quality of images produced by one of the most common diagnostic tools used in doctors’ offices – the ultrasound machine.

In laboratory experiments on mice, scientists found that nano-sized particles injected into the animals improved the resulting images. This study is one of the first reports showing that ultrasound can detect these tiny particles when they are inside the body, said Thomas Rosol, a study co-author and dean of the college of veterinary medicine at Ohio State University.


“Given their tiny size, nobody thought it would be possible for ultrasound to detect nanoparticles,” he said.

It turns out that not only can ultrasound waves sense nanoparticles, but the particles can brighten the resulting image. One day, those bright spots may indicate that a few cells in the area may be on the verge of mutating and growing out of control.

“The long-term goal is to use this technology to improve our ability to identify very early cancers and other diseases,” said Jun Liu, a study co-author and an assistant professor of biomedical engineering at Ohio State University. “We ultimately want to identify disease at its cellular level, at its very earliest stage.”

The study is in the current issue of the journal Physics in Medicine and Biology.

The researchers injected a solution of silica nanoparticles into the tail vein of each mouse. They then anesthetized the animals and placed them on their backs on a warm imaging table.

Rosol said that Liu and her team are working on creating biodegradable nanoparticles. For the purposes of this study, however, the researchers wanted to use a hard substance, silica, to see if their idea would work. The strongest ultrasound signals are those produced by sound waves bounce off a hard surface. While not biodegradable, the nanoparticles used in the study were biologically inert.

The researchers took ultrasound images of the animals’ livers every five minutes for 90 minutes after the injection. The nanoparticles had accumulated in the animals’ livers. Another future step for this work is to label nanoparticles with a molecular road map of sorts, which would direct the particles to go to specific locations in the body.

“The liver takes up foreign substances in the body, so it’s not surprising that that’s where we saw the particles,” Rosol said. “But we ultimately want to be able to make these particles to go to the mammary glands or other tissues we’re interested in.”

The ultrasound images grew brighter over the 90-minute period. The researchers compared these images to those from a group of control mice injected with a saline solution. There was no change in ultrasound image brightness in the control mice after that injection.

While this research is still in its infancy, Rosol and his colleagues foresee a day when nanotechnology can alert a physician to the beginnings of cancer or heart disease, perhaps in a woman who has a family history of breast cancer:

“Her doctor could inject the breast with nanoparticles and the resulting ultrasound image would alert the doctor to any suspicious areas in the tissue, even at the cellular level,” Rosol said.

The hope is that combining ultrasound and nanotechnology may provide a definitive diagnosis in lieu of an invasive procedure like a biopsy.

“These nanoparticles may make it possible for physicians to screen for tumors very quickly, and perhaps lessen the need for a biopsy in many cases,” Liu said.

Nanoparticles are smaller than any cell in the human body, so they may pass through the walls of the leaky blood vessels, or capillaries, of tumor tissue and actually infiltrate the tumor.

“Until now, nobody knew what these particles would do in the blood,” Rosol said. “But they made it into the liver.

And despite their miniscule size, nanoparticles are still big enough to carry a payload of medicine, Rosol said.

“That the particles made it into the liver suggests that they could be used to deliver toxic chemotherapeutic drugs that would act locally on a tissue, at the site of a tumor, and not have such a pronounced affect on the rest of the body,” Rosol said. “The problem with chemotherapy is that the drug affects the whole body, causing a host of problems such as hair loss, diarrhea and anemia.”

Rosol and Liu conducted the study with colleagues from various academic departments at Ohio State : Andrea Levine and Mamoru Yamaguchi , both with veterinary biosciences; John Mattoon , with veterinary clinical sciences; Robert Lee , with pharmacy; and Xueliang Pan, with statistics.

This work was supported by the Susan G. Komen Breast Cancer Foundation, the National Cancer Institute, the National Center for Research Resources and the National Science Foundation.

Thomas Rosol | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>