Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology may find disease before it starts

26.04.2006


Nanotechnology may one day help physicians detect the very earliest stages of serious diseases like cancer, a new study suggests.



It would do so by improving the quality of images produced by one of the most common diagnostic tools used in doctors’ offices – the ultrasound machine.

In laboratory experiments on mice, scientists found that nano-sized particles injected into the animals improved the resulting images. This study is one of the first reports showing that ultrasound can detect these tiny particles when they are inside the body, said Thomas Rosol, a study co-author and dean of the college of veterinary medicine at Ohio State University.


“Given their tiny size, nobody thought it would be possible for ultrasound to detect nanoparticles,” he said.

It turns out that not only can ultrasound waves sense nanoparticles, but the particles can brighten the resulting image. One day, those bright spots may indicate that a few cells in the area may be on the verge of mutating and growing out of control.

“The long-term goal is to use this technology to improve our ability to identify very early cancers and other diseases,” said Jun Liu, a study co-author and an assistant professor of biomedical engineering at Ohio State University. “We ultimately want to identify disease at its cellular level, at its very earliest stage.”

The study is in the current issue of the journal Physics in Medicine and Biology.

The researchers injected a solution of silica nanoparticles into the tail vein of each mouse. They then anesthetized the animals and placed them on their backs on a warm imaging table.

Rosol said that Liu and her team are working on creating biodegradable nanoparticles. For the purposes of this study, however, the researchers wanted to use a hard substance, silica, to see if their idea would work. The strongest ultrasound signals are those produced by sound waves bounce off a hard surface. While not biodegradable, the nanoparticles used in the study were biologically inert.

The researchers took ultrasound images of the animals’ livers every five minutes for 90 minutes after the injection. The nanoparticles had accumulated in the animals’ livers. Another future step for this work is to label nanoparticles with a molecular road map of sorts, which would direct the particles to go to specific locations in the body.

“The liver takes up foreign substances in the body, so it’s not surprising that that’s where we saw the particles,” Rosol said. “But we ultimately want to be able to make these particles to go to the mammary glands or other tissues we’re interested in.”

The ultrasound images grew brighter over the 90-minute period. The researchers compared these images to those from a group of control mice injected with a saline solution. There was no change in ultrasound image brightness in the control mice after that injection.

While this research is still in its infancy, Rosol and his colleagues foresee a day when nanotechnology can alert a physician to the beginnings of cancer or heart disease, perhaps in a woman who has a family history of breast cancer:

“Her doctor could inject the breast with nanoparticles and the resulting ultrasound image would alert the doctor to any suspicious areas in the tissue, even at the cellular level,” Rosol said.

The hope is that combining ultrasound and nanotechnology may provide a definitive diagnosis in lieu of an invasive procedure like a biopsy.

“These nanoparticles may make it possible for physicians to screen for tumors very quickly, and perhaps lessen the need for a biopsy in many cases,” Liu said.

Nanoparticles are smaller than any cell in the human body, so they may pass through the walls of the leaky blood vessels, or capillaries, of tumor tissue and actually infiltrate the tumor.

“Until now, nobody knew what these particles would do in the blood,” Rosol said. “But they made it into the liver.

And despite their miniscule size, nanoparticles are still big enough to carry a payload of medicine, Rosol said.

“That the particles made it into the liver suggests that they could be used to deliver toxic chemotherapeutic drugs that would act locally on a tissue, at the site of a tumor, and not have such a pronounced affect on the rest of the body,” Rosol said. “The problem with chemotherapy is that the drug affects the whole body, causing a host of problems such as hair loss, diarrhea and anemia.”

Rosol and Liu conducted the study with colleagues from various academic departments at Ohio State : Andrea Levine and Mamoru Yamaguchi , both with veterinary biosciences; John Mattoon , with veterinary clinical sciences; Robert Lee , with pharmacy; and Xueliang Pan, with statistics.

This work was supported by the Susan G. Komen Breast Cancer Foundation, the National Cancer Institute, the National Center for Research Resources and the National Science Foundation.

Thomas Rosol | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>