Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology may find disease before it starts

26.04.2006


Nanotechnology may one day help physicians detect the very earliest stages of serious diseases like cancer, a new study suggests.



It would do so by improving the quality of images produced by one of the most common diagnostic tools used in doctors’ offices – the ultrasound machine.

In laboratory experiments on mice, scientists found that nano-sized particles injected into the animals improved the resulting images. This study is one of the first reports showing that ultrasound can detect these tiny particles when they are inside the body, said Thomas Rosol, a study co-author and dean of the college of veterinary medicine at Ohio State University.


“Given their tiny size, nobody thought it would be possible for ultrasound to detect nanoparticles,” he said.

It turns out that not only can ultrasound waves sense nanoparticles, but the particles can brighten the resulting image. One day, those bright spots may indicate that a few cells in the area may be on the verge of mutating and growing out of control.

“The long-term goal is to use this technology to improve our ability to identify very early cancers and other diseases,” said Jun Liu, a study co-author and an assistant professor of biomedical engineering at Ohio State University. “We ultimately want to identify disease at its cellular level, at its very earliest stage.”

The study is in the current issue of the journal Physics in Medicine and Biology.

The researchers injected a solution of silica nanoparticles into the tail vein of each mouse. They then anesthetized the animals and placed them on their backs on a warm imaging table.

Rosol said that Liu and her team are working on creating biodegradable nanoparticles. For the purposes of this study, however, the researchers wanted to use a hard substance, silica, to see if their idea would work. The strongest ultrasound signals are those produced by sound waves bounce off a hard surface. While not biodegradable, the nanoparticles used in the study were biologically inert.

The researchers took ultrasound images of the animals’ livers every five minutes for 90 minutes after the injection. The nanoparticles had accumulated in the animals’ livers. Another future step for this work is to label nanoparticles with a molecular road map of sorts, which would direct the particles to go to specific locations in the body.

“The liver takes up foreign substances in the body, so it’s not surprising that that’s where we saw the particles,” Rosol said. “But we ultimately want to be able to make these particles to go to the mammary glands or other tissues we’re interested in.”

The ultrasound images grew brighter over the 90-minute period. The researchers compared these images to those from a group of control mice injected with a saline solution. There was no change in ultrasound image brightness in the control mice after that injection.

While this research is still in its infancy, Rosol and his colleagues foresee a day when nanotechnology can alert a physician to the beginnings of cancer or heart disease, perhaps in a woman who has a family history of breast cancer:

“Her doctor could inject the breast with nanoparticles and the resulting ultrasound image would alert the doctor to any suspicious areas in the tissue, even at the cellular level,” Rosol said.

The hope is that combining ultrasound and nanotechnology may provide a definitive diagnosis in lieu of an invasive procedure like a biopsy.

“These nanoparticles may make it possible for physicians to screen for tumors very quickly, and perhaps lessen the need for a biopsy in many cases,” Liu said.

Nanoparticles are smaller than any cell in the human body, so they may pass through the walls of the leaky blood vessels, or capillaries, of tumor tissue and actually infiltrate the tumor.

“Until now, nobody knew what these particles would do in the blood,” Rosol said. “But they made it into the liver.

And despite their miniscule size, nanoparticles are still big enough to carry a payload of medicine, Rosol said.

“That the particles made it into the liver suggests that they could be used to deliver toxic chemotherapeutic drugs that would act locally on a tissue, at the site of a tumor, and not have such a pronounced affect on the rest of the body,” Rosol said. “The problem with chemotherapy is that the drug affects the whole body, causing a host of problems such as hair loss, diarrhea and anemia.”

Rosol and Liu conducted the study with colleagues from various academic departments at Ohio State : Andrea Levine and Mamoru Yamaguchi , both with veterinary biosciences; John Mattoon , with veterinary clinical sciences; Robert Lee , with pharmacy; and Xueliang Pan, with statistics.

This work was supported by the Susan G. Komen Breast Cancer Foundation, the National Cancer Institute, the National Center for Research Resources and the National Science Foundation.

Thomas Rosol | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>