Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In new study, ancient and modern evidence suggests limits to future global warming

24.04.2006


Duke-led team ran some 1,000 computer simulations, covering 1,000 years, to get a longer-range assessment



Duke-led team ran some 1,000 computer simulations, covering 1,000 years, to get a longer-range assessmentDURHAM, N.C. -- Instrumental readings made during the past century offer ample evidence that carbon dioxide and other "greenhouse gases" in the atmosphere are warming Earth’s climate, a team led by Duke University scientists has reported. But by analyzing indirect evidence of temperature fluctuations over six previous centuries, the team also found that the magnitude of future global warming will likely fall well short of current highest predictions.

In making their deductions, the researchers ran some 1,000 computer simulations, covering 1,000 years, that took into account a range of modern and ancient climate records. Modern records are based on thermometer readings, while measurements derived from such sources as tree rings and ice cores served as markers of warm and cold spells over prior centuries.


The investigators evaluated the data using an "energy balance model" that they describe as a slimmed-down version of the heavy-duty computer models typically used to analyze climate trends. It is the model’s streamlined nature that enabled the researchers to perform such large numbers of simulations over such a long period in such detail, they said.

The group used thousands of different versions of this model, each version varying in some of its properties, in order to determine which variants best matched actual observations. One key property that varied was what the researchers termed "sensitivity" -- that is, how much the simulations’ temperatures would change in response to increasing greenhouse gas levels.

"What I can say very confidently is that the present-day sensitivity is not zero, meaning that there is a positive, warming response to greenhouse gases," said climate analyst Gabriele Hegerl, an associate research professor at Duke’s Nicholas School of the Environment and Earth Sciences. "Our work also substantially reduces the probability of very high climate sensitivities."

Hegerl is lead author of the study, published April 20, 2006, in the journal Nature. Her co-authors are Thomas Crowley, Duke’s Nicholas Professor of Earth Systems Science; William Hyde, a former Nicholas School research scientist now at the University of Toronto; and David Frame, a researcher at the University of Oxford.

Their work was supported by the National Oceanic and Atmospheric Administration, the U.S. Department of Energy and the National Science Foundation.

Many scientists expect that the level of carbon dioxide in the atmosphere will sometime this century reach double the levels that were present during preindustrial times. Because carbon dioxide traps outgoing heat energy similarly to the glass in a greenhouse, the additional human-created outputs of the gas -- mostly from fossil-fuel burning -- are expected to warm Earth’s climate. The key question is: by how much?

The commonly accepted range for how much average global temperatures will rise in response to a doubling of atmospheric carbon dioxide is between 1.5 and 4.5 degrees centigrade, according to the researchers. But some observational studies, they noted, suggest the possibility that average temperatures might rise more than 9 degrees.

However, the new study -- using "reconstructions" of Northern Hemisphere temperatures since the year 1270 -- indicates a 90 percent probability that a doubling of carbon dioxide levels will result in temperature increases of between 1.5 and 6.2 degrees, the team reported.

In turn, the study showed a reduced likelihood that the actual maximum increase will exceed 4.5 degrees -- "from 36 percent to 15 percent or less," the researchers said. A 4.5 degree increase is the highest maximum currently predicted by the international Intergovernmental Panel on Climate Change.

Hegerl said her group confined its study largely to the Northern Hemisphere because only there have scientists collected enough data to reconstruct temperature variations over the entire past millennium.

According to Hegerl, some studies claim that preindustrial temperatures fluctuated very little until the past century, and have risen sharply since.

"But our reconstruction supports a lot of variability in the past, as well as an upward trend in the 20th century," she said. And a record with plenty of ups and downs before the modern era "shows a climate reacting then and now to a variety of ’external forcing,’" she said.

The term "external forcing" refers to all those outside influences that can perturb the climate. Understanding how temperatures responded to such forcings in the premodern era -- when the impact of carbon dioxide and other heat-trapping gases varied relatively little -- helps scientists predict future forcings by greenhouse gases, Hegerl said.

"Looking back longer in time makes it possible to more confidently rule out responses that are very high or very low," she said.

The researchers consulted instrumental records of the various forcings that have occurred in modern times, with the aim of comparing those to actual recorded temperatures.

In order to reconstruct temperatures from the centuries before 1850, the team used various lines of indirect evidence. They looked, for example, at particulates trapped in ice cores as measures of past volcanic eruptions. Such eruptions eject clouds of particles high into the atmosphere. By reducing the amount of sunlight that can pass through the atmosphere, the particles tend to cool the climate for a time, Hegerl said.

They also consulted a number of tree ring studies that reveal hot and cold spells in ancient growth variations, as well as studies that can estimate temperatures as far back as the 1600s based on readings obtained from holes bored deep into the ground.

Although the researchers collected data spanning a full millennium, because of some technical limitations they actually simulated temperature variations over a roughly 700-year period beginning in 1270.

All in all, the researchers considered four different detailed reconstructions of past climates, including a new reconstruction done by Crowley and Hegerl, to deduce probable temperatures before reliable instruments were available.

According to Hegerl, past volcanic eruptions provided the strongest tie between past climate forcings and temperatures. "You can see downturns in temperature exactly where you see volcanic eruptions," she said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>