Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly astronomical event not likely to happen in our galaxy, study finds

20.04.2006


Are you losing sleep at night because you’re afraid that all life on Earth will suddenly be annihilated by a massive dose of gamma radiation from the cosmos?



Well, now you can rest easy.

Some scientists have wondered whether a deadly astronomical event called a gamma ray burst could happen in a galaxy like ours, but a group of astronomers at Ohio State University and their colleagues have determined that such an event would be nearly impossible.


Gamma ray bursts (GRBs) are high-energy beams of radiation that shoot out from the north and south magnetic poles of a particular kind of star during a supernova explosion, explained Krzysztof Stanek, associate professor of astronomy at Ohio State. Scientists suspect that if a GRB were to occur near our solar system, and one of the beams were to hit Earth, it could cause mass extinctions all over the planet.

The GRB would have to be less than 3,000 light years away to pose a danger, Stanek said. One light year is approximately 6 trillion miles, and our galaxy measures 100,000 light years across. So the event would not only have to occur in our galaxy, but relatively close by, as well.

In the new study, which Stanek and his coauthors submitted to the Astrophysical Journal, they found that GRBs tend to occur in small, misshapen galaxies that lack heavy chemical elements (astronomers often refer to all elements other than the very lightest ones -- hydrogen, helium, and lithium -- as metals). Even among metal-poor galaxies, the events are rare -- astronomers only detect a GRB once every few years.

But the Milky Way is different from these GRB galaxies on all counts -- it’s a large spiral galaxy with lots of heavy elements.

The astronomers did a statistical analysis of four GRBs that happened in nearby galaxies, explained Oleg Gnedin, a postdoctoral researcher at Ohio State. They compared the mass of the four host galaxies, the rate at which new stars were forming in them, and their metal content to other galaxies catalogued in the Sloan Digital Sky Survey.

Though four may sound like a small sample compared to the number of galaxies in the universe, these four were the best choice for the study because astronomers had data on their composition, Stanek said. All four were small galaxies with high rates of star formation and low metal content.

Of the four galaxies, the one with the most metals -- the one most similar to ours -- hosted the weakest GRB. The astronomers determined that the odds of a GRB occurring in a galaxy like that one to be approximately 0.15 percent.

And the Milky Way’s metal content is twice as high as that galaxy, so our odds of ever having a GRB would be even lower than 0.15 percent.

"We didn’t bother to compute the odds for our galaxy, because 0.15 percent seemed low enough," Stanek said.

He figures that most people weren’t losing sleep over the possibility of an Earth-annihilating GRB. "I wouldn’t expect the stock market to go up as a result of this news, either," he said. "But there are a lot of people who have wondered whether GRBs could be blamed for mass extinctions early in Earth’s history, and our work suggests that this is not the case."

Astronomers have studied GRBs for more than 40 years, and only recently determined where they come from. In fact, Stanek led the team that tied GRBs to supernovae in 2003.

He and Gnedin explained that when a very massive, rapidly rotating star explodes in a supernova, its magnetic field directs gamma radiation to flow only out of the star’s north and south magnetic poles, forming high-intensity jets.

Scientists have measured the energies of these events and assumed -- rightly so, Stanek said -- that such high-intensity radiation could destroy life on a planet. That’s why some scientists have proposed that a GRB could have been responsible for a mass extinction that occurred on Earth 450 million years ago.

Now it seems that gamma ray bursts may not pose as much a danger to Earth or any other potential life in the universe, either, since they are unlikely to occur where life would develop.

Planets need metals to form, Stanek said, so a low-metal galaxy would probably have fewer planets, and fewer chances for life.

He added that he didn’t originally intend to address the question of mass extinctions. The study grew out of a group discussion during the Ohio State Department of Astronomy’s "morning coffee" -- a daily half-hour where faculty and students review new astronomy journal articles that have been posted to Internet preprint servers overnight. In February, Stanek published a paper on a GRB he had observed, and during coffee someone asked whether he thought it was just a coincidence that these events seem to happen in small, metal-poor galaxies.

"My initial reaction was that it’s not a coincidence, and everyone just knows that GRBs happen in metal-poor galaxies. But then people asked, ’Is it really that well known? Has anybody actually proven it to be true?’ And we realized that nobody had."

As a result, the list of coauthors on the paper includes astronomers across a broad range of expertise, which Stanek said is somewhat unusual in these days of specialized research. The coauthors were among faculty gathered for coffee that day, plus a few friends they recruited to help them: Stanek and Gnedin; John Beacom, assistant professor of physics and astronomy; Jennifer Johnson, assistant professor of astronomy; Juna Kollmeier, a graduate student; Andrew Gould, Marc Pinsonneault, Richard Pogge, and David Weinberg, all professors of astronomy at Ohio State; and Maryam Modjaz, a graduate student at the Harvard-Smithsonian Center for Astrophysics.

This work was sponsored by the National Science Foundation.

Krzysztof Stanek | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>