Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis highlights areas for research into genetic causes of alcoholism

20.04.2006


Study generates genes, some previously considered, for further study

The findings of a meta-analysis of microarray data of several mouse models that differ in voluntary alcohol consumption highlight new neurobiological targets for further study and provide researchers a novel statistical approach for use in future microarray meta-analyses.

Insight into the genetic differences in gene expression associated with different levels of drinking may lead to a better understanding of alcoholism. Genetic studies of alcoholism have long confirmed the complexity of the disease and uncovering the underlying molecular mechanisms remains a formidable task.

The meta-analysis was completed by Susan Bergeson, an assistant professor of neurobiology at The University of Texas at Austin, and a multi-site research team participating in a National Institute on Alcohol Abuse and Alcoholism supported Integrative Neuroscience Initiative on Alcoholism (INIA). It has led to new insights into the genetics of the predisposition to drink alcohol.



"What our results do is essentially generate candidate genes to be tested," Bergeson said. "Many of the genes we identified have never previously been implicated in alcohol drinking, including several whose function remains completely unknown."

The analysis involved nine mouse models, which differed in their levels of alcohol consumption. None of the mice were exposed to alcohol because the focus of the experiment was to study the genetic predisposition to drink alcohol.

Gene expression in the brain was assayed using microarray analysis, and a novel statistical approach to the meta-analysis identified nearly 4,000 differentially regulated genes between the high and low alcohol consuming mice.

The INIA investigators narrowed the significant changes using three different approaches:

An overlap analysis between human and mouse was completed using chromosomal regions shown to be associated with drinking and alcohol dependence in previously reported genetic studies. Thirty-three genes in the meta-analysis matched these regions where the human and mouse genetic alignments are the same; 11 were from three gene families.

In addition, the thousands of genes were narrowed to a much shorter list using bioinformatics approaches that identified overrepresentation within pathways.

Finally, 20 genes for one chromosomal region long been known to be involved in alcohol drinking were identified using a novel filtering approach.

Mice containing a chromosome 9 region from a low alcohol drinking strain in the genome of a high alcohol drinking strain were also analyzed. Microarray results for the congenic 9 mouse became a filter for the overall meta-analysis and were used to identify genetically divergent genes on mouse chromosome nine.

"We were able to use the power of many studies to narrow thousands of candidate genes to a manageable list in a way that would have been considerably more difficult without the meta-analysis," Bergeson said. "In addition, there were several genes found associated with drinking in this study that have never previously been characterized. If we had done nothing else but point to a gene that would have not been otherwise discovered, that was a valuable thing to do." Blednov, Vishwanath R. Iyer and Bergeson of The University of Texas at Austin.

Tim Green | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>