Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis highlights areas for research into genetic causes of alcoholism

20.04.2006


Study generates genes, some previously considered, for further study

The findings of a meta-analysis of microarray data of several mouse models that differ in voluntary alcohol consumption highlight new neurobiological targets for further study and provide researchers a novel statistical approach for use in future microarray meta-analyses.

Insight into the genetic differences in gene expression associated with different levels of drinking may lead to a better understanding of alcoholism. Genetic studies of alcoholism have long confirmed the complexity of the disease and uncovering the underlying molecular mechanisms remains a formidable task.

The meta-analysis was completed by Susan Bergeson, an assistant professor of neurobiology at The University of Texas at Austin, and a multi-site research team participating in a National Institute on Alcohol Abuse and Alcoholism supported Integrative Neuroscience Initiative on Alcoholism (INIA). It has led to new insights into the genetics of the predisposition to drink alcohol.



"What our results do is essentially generate candidate genes to be tested," Bergeson said. "Many of the genes we identified have never previously been implicated in alcohol drinking, including several whose function remains completely unknown."

The analysis involved nine mouse models, which differed in their levels of alcohol consumption. None of the mice were exposed to alcohol because the focus of the experiment was to study the genetic predisposition to drink alcohol.

Gene expression in the brain was assayed using microarray analysis, and a novel statistical approach to the meta-analysis identified nearly 4,000 differentially regulated genes between the high and low alcohol consuming mice.

The INIA investigators narrowed the significant changes using three different approaches:

An overlap analysis between human and mouse was completed using chromosomal regions shown to be associated with drinking and alcohol dependence in previously reported genetic studies. Thirty-three genes in the meta-analysis matched these regions where the human and mouse genetic alignments are the same; 11 were from three gene families.

In addition, the thousands of genes were narrowed to a much shorter list using bioinformatics approaches that identified overrepresentation within pathways.

Finally, 20 genes for one chromosomal region long been known to be involved in alcohol drinking were identified using a novel filtering approach.

Mice containing a chromosome 9 region from a low alcohol drinking strain in the genome of a high alcohol drinking strain were also analyzed. Microarray results for the congenic 9 mouse became a filter for the overall meta-analysis and were used to identify genetically divergent genes on mouse chromosome nine.

"We were able to use the power of many studies to narrow thousands of candidate genes to a manageable list in a way that would have been considerably more difficult without the meta-analysis," Bergeson said. "In addition, there were several genes found associated with drinking in this study that have never previously been characterized. If we had done nothing else but point to a gene that would have not been otherwise discovered, that was a valuable thing to do." Blednov, Vishwanath R. Iyer and Bergeson of The University of Texas at Austin.

Tim Green | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>