Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older children not smarter than their younger sibs, study finds

12.04.2006


A recent study provides some of the best evidence to date that birth order really doesn’t have an effect on intelligence.



The findings contradict many studies over the years that had reported that older children are generally smarter than their younger siblings.

This new study, based on a large, nationwide sample, suggests a critical flaw in that previous research, said Aaron Wichman, lead author of the new study and a teaching fellow in psychology at Ohio State University.


Most previous studies compared children from different families, so what they were finding were differences between large and small families, not differences between siblings, according to Wichman.

“Third- and fourth-born children all come from larger families, and larger families have disadvantages that will impact children’s intelligence,” he said.

“In reality, if you look at these larger families, the fourth-born child is just as intelligent as the first-born. But they all don’t do as well as children from a smaller family.”

Wichman conducted the study with Joseph Lee Rodgers of the University of Oklahoma and Robert MacCallum of the University of North Carolina–Chapel Hill and professor emeritus of psychology at Ohio State. Their findings were published in a recent issue of the journal Personality and Social Psychology Bulletin.

The new study used data involving nearly 3,000 families who participated in the National Longitudinal Survey of Youth, which is funded primarily by the U.S. Bureau of Labor Statistics. The NLSY is a nationally representative survey of people nationwide conducted by Ohio State’s Center for Human Resource Research.

The families in the study were followed over a long period of time. Data from this study were collected from 1986 through 1998. All the children in the study took intelligence tests that measured skill in mathematics, reading recognition and reading comprehension.

This data set allowed the researchers to compare children within a family, to see whether first-borns did better on these tests than did their younger siblings. There have been only a few other studies that have been done within families, and the results of those also suggested no link between birth order and intelligence.

But Wichman and his colleagues did something else to ensure a more accurate analysis: They compared intelligence test results at two specific age points (7-8 years old and 13-14 years old). Other studies had examined how children in a family scored on intelligence tests taken at one time, when children’s ages may vary widely. This may have affected study results.

Another key to this study was that researchers used a relatively new statistical technique, called multilevel modeling, that allowed them to separate two kinds of variation in intelligence: variation between families, and variation among siblings within families. In addition, this technique allowed the researchers to study variables such as environmental influences that might explain differences in intelligence.

In an initial analysis, the researchers examined the data while ignoring environmental influences on intelligence that differed between families. The results showed, as expected, that first-born children scored higher on intelligence tests than later-born children, and that as a child’s birth order increased, intelligence scores went down.

But then the researchers analyzed the data using a variable that could take into account environmental differences between families. That variable was the mother’s age at the birth of her first child.

“Mother’s age encapsulates many variables that could negatively effect the child-rearing environment. The younger a mother was at the birth of her first child, the lower we would expect intelligence scores to be within a family,” Wichman said.

That’s because younger mothers would tend to have less education, more children, lower income, and other factors that would negatively affect the intelligence of their children.

When the researchers controlled for mother’s age at first birth, the effect of birth order on intelligence was nearly eliminated.

So, by taking into account the mother’s age, the researchers were able to show that the reason that later-born siblings seem to have lower intelligence has to do with the fact that they come from larger families that may have different home environments than smaller families. It has little if anything to do with their birth order within the family, he said.

While the researchers used mother’s age at first birth to help control for differences between families, Wichman said other factors could have also been used instead. In fact, in an unpublished analysis, the researchers did use family size itself as a control variable, and found that it also nearly eliminated the link between birth order and intelligence.

However, using family size as the control variable can create other statistical errors, Wichman said, so the researchers used the mother’s age as a substitute.

The results, though, are clear, Wichman said.

“Birth order may appear to be associated with intelligence, but that’s only because larger families don’t have the advantages of smaller families,” he said. “When examined within families, there is no evidence of any significant association between birth order and intelligence. It’s not your birth order that is important – family environment and genetic influences are the really important factors.”

Aaron Wichman | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>