Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genomic signature of 254 genes predicting clinical outcome in Primary Cutaneous Melanoma identified

06.04.2006


EORTC Melanoma Group researchers have identified a genomic signature predicting clinical outcome in Primary Cutaneous Melanoma, after patients having undergone standard treatment. The results of the retrospective study are published in today’s issue of the Journal of the National Cancer Institute.

About the study:

The study was initiated on the following observation: Patients with Primary Cutaneous Melanoma having received standard treatment fall into two groups – one group of patients without relapse after four or more years, and another group which recurrently develops metastasis.



Micro-array analysis allowed to isolate a set of 254 genes which are expressed differently in the tumor with good prognosis than in the tumor with bad prognosis. These 254 genes represent a “genomic signature” of the tumor which allows to identify to which of the two groups of prognosis a patient belongs to.

Some of the genes in question have a known activity in melanoma, whereas other genes identified have also been previously shown to be involved in other cancers. Of particular interest are 33 genes in melanomas from patients that did not metastasize – indicating an anti-metastatic role for these genes.

Furthermore, a biological pathway associated with the expression of these genes was identified: Two proteins where shown to intervene in the process of DNA replication. These two proteins (helicasis) represent potential targets for the development of new therapies for the patients that fall within the group with bad prognosis.

The findings allow for a more accurate diagnosis of melanoma and will allow patients to make a more informed choice as to whether or not to take part in clinical trials. For a patient with bad prognosis, taking part in a clinical trial could possibly result in an increase chances of survival or/and quality of life.

The study is the first study that uses a large retrospective series of frozen samples with long-term follow-up to analyze the genes underlying progression in melanoma. Gene expression profiling data is still scarce because of the lack of retrospective collections of frozen tumors.

Nicole Heine | alfa
Further information:
http://www.eortc.be

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>