Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek alternative for leukemia patients resistant to standard therapies

04.04.2006


A study led by researchers from the Howard Hughes Medical Institute has found that dasatinib provides significant benefit in chronic myeloid leukemia (CML) patients resistant to Gleevec® (imatinib), according to a study presented today during the 97th Annual Meeting of the American Association for Cancer Research.



In an update of a phase I study initiated in November 2003, researchers looked at the use of dasatinib in imatinib resistant or intolerant patients with CML in late chronic phase (CP), accelerated phase (AP), myeloid blast crisis (MBC), or lymphoid blast crisis (LBC/Ph+ ALL). Data are available for 84 patients (40 CP, 11 AP, 23 MBC, 10 LBC/Ph+ ALL). A blast crisis is the progression of diseases to an acute advanced phase.

Imatinib – which blocks the irregular protein that allows the overproduction of abnormal white blood cells – has become a standard therapy for CML patients not undergoing stem cell transplantation. However, a number of patients have developed resistance to this treatment because their cancer cells are able to mutate and adapt.


The 40 CP patients, with five years median duration of CML, were treated with 15 to 180 mg of dasatinib either once daily (QD) or twice daily (BID) for a median of 13 months. The rate of complete hematologic response (CHR) in CP patients was 93 percent, while major cytogenetic responses (MCyR) were observed in 45 percent and complete cytogenetic response (CCyR) in 35 percent.

In advanced disease, 44 patients have been treated with dasatinib (50 to 240 mg BID) for a median of 37 months. The rate of major hematologic response (MHR) is 81 percent in AP, 61 percent in MBC, and 80 percent in LBC/Ph+ ALL. The overall rates of MCyR and CCyR in advanced disease were 43 percent and 25 percent, respectively. Responses were durable in CP and AP patients, but relapses have occurred in the MBC and LBC/Ph+ ALL groups, often due to dasatinib-resistant BCR-ABL mutations.

CML is usually diagnosed by finding what is called the Philadelphia chromosome (Ph chromosome). The Ph chromosome is the result of a genetic abnormality among portions of chromosomes 9 and 22. In this, part of the BCR (breakpoint cluster region) gene from chromosome 22 is merged with part of the ABL (abelson leukemia virus) gene on chromosome 9. The irregularity takes place in a single bone marrow cell and – through the process of cell division and expansion – results in leukemia, including some cases of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Imatinib resistance in CML and Ph chromosome positive ALL is frequently associated with BCR-ABL mutations that interfere with the ability of imatinib to stop BCR-ABL overproduction. Dasatinib (BMS-354825), which targets BCR-ABL, is 325-fold stronger than imatinib in cells with normal BCR-ABL genes and has demonstrated preclinical activity against 18 of 19 imatinib-resistant BCR-ABL mutants.

*Abstract No. CP-2: Development of the ABL Kinase Inhibitor, Dasatinib (BMS-354825), in Imatinib-Resistant Philadelphia Chromosome Positive Leukemias

Warren Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>