Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek alternative for leukemia patients resistant to standard therapies

04.04.2006


A study led by researchers from the Howard Hughes Medical Institute has found that dasatinib provides significant benefit in chronic myeloid leukemia (CML) patients resistant to Gleevec® (imatinib), according to a study presented today during the 97th Annual Meeting of the American Association for Cancer Research.



In an update of a phase I study initiated in November 2003, researchers looked at the use of dasatinib in imatinib resistant or intolerant patients with CML in late chronic phase (CP), accelerated phase (AP), myeloid blast crisis (MBC), or lymphoid blast crisis (LBC/Ph+ ALL). Data are available for 84 patients (40 CP, 11 AP, 23 MBC, 10 LBC/Ph+ ALL). A blast crisis is the progression of diseases to an acute advanced phase.

Imatinib – which blocks the irregular protein that allows the overproduction of abnormal white blood cells – has become a standard therapy for CML patients not undergoing stem cell transplantation. However, a number of patients have developed resistance to this treatment because their cancer cells are able to mutate and adapt.


The 40 CP patients, with five years median duration of CML, were treated with 15 to 180 mg of dasatinib either once daily (QD) or twice daily (BID) for a median of 13 months. The rate of complete hematologic response (CHR) in CP patients was 93 percent, while major cytogenetic responses (MCyR) were observed in 45 percent and complete cytogenetic response (CCyR) in 35 percent.

In advanced disease, 44 patients have been treated with dasatinib (50 to 240 mg BID) for a median of 37 months. The rate of major hematologic response (MHR) is 81 percent in AP, 61 percent in MBC, and 80 percent in LBC/Ph+ ALL. The overall rates of MCyR and CCyR in advanced disease were 43 percent and 25 percent, respectively. Responses were durable in CP and AP patients, but relapses have occurred in the MBC and LBC/Ph+ ALL groups, often due to dasatinib-resistant BCR-ABL mutations.

CML is usually diagnosed by finding what is called the Philadelphia chromosome (Ph chromosome). The Ph chromosome is the result of a genetic abnormality among portions of chromosomes 9 and 22. In this, part of the BCR (breakpoint cluster region) gene from chromosome 22 is merged with part of the ABL (abelson leukemia virus) gene on chromosome 9. The irregularity takes place in a single bone marrow cell and – through the process of cell division and expansion – results in leukemia, including some cases of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Imatinib resistance in CML and Ph chromosome positive ALL is frequently associated with BCR-ABL mutations that interfere with the ability of imatinib to stop BCR-ABL overproduction. Dasatinib (BMS-354825), which targets BCR-ABL, is 325-fold stronger than imatinib in cells with normal BCR-ABL genes and has demonstrated preclinical activity against 18 of 19 imatinib-resistant BCR-ABL mutants.

*Abstract No. CP-2: Development of the ABL Kinase Inhibitor, Dasatinib (BMS-354825), in Imatinib-Resistant Philadelphia Chromosome Positive Leukemias

Warren Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>