Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigment is focus of macular degeneration research

03.04.2006


Whether a tiny yellow pigment is the main thing standing between many older people and macular degeneration is under study at the Medical College of Georgia.



Researchers are measuring this macular pigment that sits on the retina at the fovea, the point of highest vision acuity and best color vision, to better understand what a healthy, normal pigment looks like, says Dr. John Nolan, vision scientist and Fulbright postdoctoral fellow in the MCG Department of Ophthalmology.

The idea is that thinning of this pigment – comprised of yellow antioxidants that come from food or dietary supplements – opens the door for retinal cell destruction, the hallmark of macular degeneration.


The hope is that measuring this protective pigment will one day be part of routine vision screening and macular degeneration will lose its distinction as the leading cause of blindness in people over age 60, says Dr. Nolan.

“This pigment is thought to protect the retina from damage by light and excess oxidation, which over a lifetime can accumulate and contribute to the process of macular degeneration,” says Dr. Max Snodderly, MCG vision scientist and Dr. Nolan’s sponsor.

The retina receiving too much high-energy blue light – the same light that gives the sky its color – seems to be a major cause of oxidation and cell death. “So you are kind of rusting as you get old,” Dr. Snodderly says. A macular pigment that’s thin because of genetics or gets that way because of a poor diet or smoking, enables such rusting.

Dr. Snodderly’s studies of monkeys raised on a synthetic diet lacking components of the pigment – lutein and zeaxanthin – showed they also lacked the pigment until the components were added to the diet. “The retina was able to take it up, even though it had never seen it before,” he says of the natural pigments found in dark green leafy vegetables such as spinach, turnips and collards, as well as colored fruit and egg yolk.

Studies of more than 800 people age 20-60 with good vision back in Dr. Nolan’s homeland of Ireland have parallel findings: that the protective macular pigment can be increased with dietary change and/or dietary supplements of lutein and zeaxanthin. His studies, based at the Waterford Institute of Technology, included a subset of 200 people with healthy vision whose parents had macular degeneration. “This group with perfect vision had significantly lower levels of macular pigment than the control group. This reinforces the macular pigment story,” says Dr. Nolan, whose work has indicated a thinning of the macular pigment occurs in most aging adults although other scientists, including Dr. Snodderly, have not seen that consistently.

“It may be that once you go beyond 60, which is the age when macular degeneration typically starts developing, the pigment is depleted for several reasons, including increased oxidative stress and a poor diet, both associated with an increase in age,” Dr. Nolan says. “We found that smokers have significantly less macular pigment, both because they tend to have a poorer diet and smoking causes increased oxidative stress.

“It makes biological sense that if you are really deficient in macular pigment that you will get macular degeneration,” Dr. Nolan says of mounting evidence. But proving it is another matter and is one of the things that brought him to MCG for a year to work with Dr. Snodderly, whose contributions in the field include helping identify components of the pigment and helping invent a way to measure it.

Dr. Nolan’s latest study, sponsored by his Fulbright scholarship and Dr. Snodderly’s lab, is looking again at 50 people age 20-60 with no major visual problems to precisely measure macular pigment and surrounding anatomy.

Measurements can be taken quickly and painlessly, without even dilating the eyes. Optical coherence tomography or OCT, already used by some eye doctors, provides three-dimensional images and measures of the fovea. The densitometer, which Dr. Snodderly helped develop and largely remains a research tool, enables measurement of the macular pigment.

“The long-term goal is that we can screen for people who are deficient in this pigment, and these are the people who should be targeted,” says Dr. Nolan. “What we are trying to find out in the meantime is, ‘Who are those people’? (And) what is a significantly lower level of macular pigment? We know what the average is, but what is a critically low level and is it different between individuals?”

He notes the solution may be as simple as an improved diet. Longitudinal studies by the National Eye Institute have shown a 25 percent reduction in progression to macular degeneration among those who took antioxidants.

Participants in Dr. Nolan’s study also are asked questions about diet, smoking and other lifestyle habits. The process takes about one hour. Interested volunteers can reach Dr. Nolan at 706-721-6382 or jnolan@mcg.edu.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>