Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigment is focus of macular degeneration research

03.04.2006


Whether a tiny yellow pigment is the main thing standing between many older people and macular degeneration is under study at the Medical College of Georgia.



Researchers are measuring this macular pigment that sits on the retina at the fovea, the point of highest vision acuity and best color vision, to better understand what a healthy, normal pigment looks like, says Dr. John Nolan, vision scientist and Fulbright postdoctoral fellow in the MCG Department of Ophthalmology.

The idea is that thinning of this pigment – comprised of yellow antioxidants that come from food or dietary supplements – opens the door for retinal cell destruction, the hallmark of macular degeneration.


The hope is that measuring this protective pigment will one day be part of routine vision screening and macular degeneration will lose its distinction as the leading cause of blindness in people over age 60, says Dr. Nolan.

“This pigment is thought to protect the retina from damage by light and excess oxidation, which over a lifetime can accumulate and contribute to the process of macular degeneration,” says Dr. Max Snodderly, MCG vision scientist and Dr. Nolan’s sponsor.

The retina receiving too much high-energy blue light – the same light that gives the sky its color – seems to be a major cause of oxidation and cell death. “So you are kind of rusting as you get old,” Dr. Snodderly says. A macular pigment that’s thin because of genetics or gets that way because of a poor diet or smoking, enables such rusting.

Dr. Snodderly’s studies of monkeys raised on a synthetic diet lacking components of the pigment – lutein and zeaxanthin – showed they also lacked the pigment until the components were added to the diet. “The retina was able to take it up, even though it had never seen it before,” he says of the natural pigments found in dark green leafy vegetables such as spinach, turnips and collards, as well as colored fruit and egg yolk.

Studies of more than 800 people age 20-60 with good vision back in Dr. Nolan’s homeland of Ireland have parallel findings: that the protective macular pigment can be increased with dietary change and/or dietary supplements of lutein and zeaxanthin. His studies, based at the Waterford Institute of Technology, included a subset of 200 people with healthy vision whose parents had macular degeneration. “This group with perfect vision had significantly lower levels of macular pigment than the control group. This reinforces the macular pigment story,” says Dr. Nolan, whose work has indicated a thinning of the macular pigment occurs in most aging adults although other scientists, including Dr. Snodderly, have not seen that consistently.

“It may be that once you go beyond 60, which is the age when macular degeneration typically starts developing, the pigment is depleted for several reasons, including increased oxidative stress and a poor diet, both associated with an increase in age,” Dr. Nolan says. “We found that smokers have significantly less macular pigment, both because they tend to have a poorer diet and smoking causes increased oxidative stress.

“It makes biological sense that if you are really deficient in macular pigment that you will get macular degeneration,” Dr. Nolan says of mounting evidence. But proving it is another matter and is one of the things that brought him to MCG for a year to work with Dr. Snodderly, whose contributions in the field include helping identify components of the pigment and helping invent a way to measure it.

Dr. Nolan’s latest study, sponsored by his Fulbright scholarship and Dr. Snodderly’s lab, is looking again at 50 people age 20-60 with no major visual problems to precisely measure macular pigment and surrounding anatomy.

Measurements can be taken quickly and painlessly, without even dilating the eyes. Optical coherence tomography or OCT, already used by some eye doctors, provides three-dimensional images and measures of the fovea. The densitometer, which Dr. Snodderly helped develop and largely remains a research tool, enables measurement of the macular pigment.

“The long-term goal is that we can screen for people who are deficient in this pigment, and these are the people who should be targeted,” says Dr. Nolan. “What we are trying to find out in the meantime is, ‘Who are those people’? (And) what is a significantly lower level of macular pigment? We know what the average is, but what is a critically low level and is it different between individuals?”

He notes the solution may be as simple as an improved diet. Longitudinal studies by the National Eye Institute have shown a 25 percent reduction in progression to macular degeneration among those who took antioxidants.

Participants in Dr. Nolan’s study also are asked questions about diet, smoking and other lifestyle habits. The process takes about one hour. Interested volunteers can reach Dr. Nolan at 706-721-6382 or jnolan@mcg.edu.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>