Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver Cancer Linked to Cellular Repair Pathway

31.03.2006


The unchecked activity of a cell signaling pathway crucial in embryonic development and the liver’s response to injury leads to liver cancer, researchers from Duke University Medical Center and John Hopkins University School of Medicine have found.



Because the pathway, called Hedgehog, is present only in immature, stem-like liver cells, the discovery offers hope for targeted treatment of liver cancer, one of the leading causes of cancer-related death in the world. Laboratory experiments show that blocking the Hedgehog pathway kills cancer cells but leaves mature healthy liver cells intact, the researchers report. Treating patients with medications to interrupt the pathway would likely eliminate the cancer cells while sparing healthy liver tissue, said Jason Sicklick, M.D., a postdoctoral fellow at Duke and lead author of the study.

"Currently, there are no good chemotherapies for liver cancer, and many people with advanced liver disease are too ill for surgery to remove tumors," Sicklick said. "There is a desperate need for effective anticancer treatments that are safe for patients with liver disease."


The results will be published in the April 4, 2006, issue of Carcinogenesis. The research was funded by the National Institutes of Health.

Finding the overactivated Hedgehog pathway in liver cancer, but not in mature liver cells, opens the door for development of new diagnostic tests for the disease, Sicklick said. "Signs of excessive Hedgehog activity in cirrhotic patients could alert us to early stages of liver cancer, as well as provide valuable prognostic information for patients," he said.

Sicklick and colleagues also discovered a new Hedgehog pathway mutation in a patient with liver cancer that may lead to overactivation of Hedgehog and trigger abnormal cell growth, promoting cancer development. In test tube and cell culture experiments, blocking the Hedgehog pathway reduced growth of cancer cells by over 90 percent.

Liver cancer, or hepatocellular carcinoma, often develops in people with cirrhotic livers damaged by chronic infections, such as hepatitis, by alcohol abuse or other causes. It is rare in people with healthy livers. The cancer’s incidence is rising in the United States, with an estimated 17,550 new cases diagnosed in 2005 and 15,420 deaths. One reason for the rising rates is the increasing prevalence of obesity, which raises the risk of liver cancer five- to six-fold, said Anna Mae Diehl, M.D., chief of Duke’s gastroenterology division and senior author on the study.

The liver’s attempts to repair itself and regenerate new tissue after injury can trigger the Hedgehog pathway. During embryonic development, Hedgehog tells cells where and when to grow. In adult tissue, it signals the body to grow new tissue. "If the liver is injured badly, it uses some of the same mechanisms to repair itself as a fetus uses in growing a liver," Diehl said.

The Hedgehog pathway is linked to certain brain, skin and muscle cancers and has recently been implicated in cancers of the pancreas, esophagus, lungs and prostate. The work by the Duke and Johns Hopkins team now adds liver cancer to the growing body of evidence suggesting these cancerous tumors are generated by stem-like cells.

Stem-like cells in the liver require the Hedgehog pathway for survival, the researchers discovered. These primitive cells are similar to stem cells, but differ in basic ways involving cell reproduction. Hedgehog may lead to liver and other cancers because of over-activation of Hedgehog pathway’s components or genetic mutations that accumulate in these components during tissue repair.

"Ordinarily, the process is very tightly regulated, but apparently something goes wrong in these cells and the pathway is not turned off. That’s what conveys malignancy," Sicklick said.

Study co-authors include Yin-Xiong Li, Yi Qi, Kouros Owzar and Wei Chen of Duke University Medical Center; Aruna Jayaraman, Rajesh Kannangai, Perumal Vivekanandan and Michael Torbenson of the Johns Hopkins University School of Medicine; and John Ludlow of Vesta Therapeutics.

Becky Oskin | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>