Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liver Cancer Linked to Cellular Repair Pathway

31.03.2006


The unchecked activity of a cell signaling pathway crucial in embryonic development and the liver’s response to injury leads to liver cancer, researchers from Duke University Medical Center and John Hopkins University School of Medicine have found.



Because the pathway, called Hedgehog, is present only in immature, stem-like liver cells, the discovery offers hope for targeted treatment of liver cancer, one of the leading causes of cancer-related death in the world. Laboratory experiments show that blocking the Hedgehog pathway kills cancer cells but leaves mature healthy liver cells intact, the researchers report. Treating patients with medications to interrupt the pathway would likely eliminate the cancer cells while sparing healthy liver tissue, said Jason Sicklick, M.D., a postdoctoral fellow at Duke and lead author of the study.

"Currently, there are no good chemotherapies for liver cancer, and many people with advanced liver disease are too ill for surgery to remove tumors," Sicklick said. "There is a desperate need for effective anticancer treatments that are safe for patients with liver disease."


The results will be published in the April 4, 2006, issue of Carcinogenesis. The research was funded by the National Institutes of Health.

Finding the overactivated Hedgehog pathway in liver cancer, but not in mature liver cells, opens the door for development of new diagnostic tests for the disease, Sicklick said. "Signs of excessive Hedgehog activity in cirrhotic patients could alert us to early stages of liver cancer, as well as provide valuable prognostic information for patients," he said.

Sicklick and colleagues also discovered a new Hedgehog pathway mutation in a patient with liver cancer that may lead to overactivation of Hedgehog and trigger abnormal cell growth, promoting cancer development. In test tube and cell culture experiments, blocking the Hedgehog pathway reduced growth of cancer cells by over 90 percent.

Liver cancer, or hepatocellular carcinoma, often develops in people with cirrhotic livers damaged by chronic infections, such as hepatitis, by alcohol abuse or other causes. It is rare in people with healthy livers. The cancer’s incidence is rising in the United States, with an estimated 17,550 new cases diagnosed in 2005 and 15,420 deaths. One reason for the rising rates is the increasing prevalence of obesity, which raises the risk of liver cancer five- to six-fold, said Anna Mae Diehl, M.D., chief of Duke’s gastroenterology division and senior author on the study.

The liver’s attempts to repair itself and regenerate new tissue after injury can trigger the Hedgehog pathway. During embryonic development, Hedgehog tells cells where and when to grow. In adult tissue, it signals the body to grow new tissue. "If the liver is injured badly, it uses some of the same mechanisms to repair itself as a fetus uses in growing a liver," Diehl said.

The Hedgehog pathway is linked to certain brain, skin and muscle cancers and has recently been implicated in cancers of the pancreas, esophagus, lungs and prostate. The work by the Duke and Johns Hopkins team now adds liver cancer to the growing body of evidence suggesting these cancerous tumors are generated by stem-like cells.

Stem-like cells in the liver require the Hedgehog pathway for survival, the researchers discovered. These primitive cells are similar to stem cells, but differ in basic ways involving cell reproduction. Hedgehog may lead to liver and other cancers because of over-activation of Hedgehog pathway’s components or genetic mutations that accumulate in these components during tissue repair.

"Ordinarily, the process is very tightly regulated, but apparently something goes wrong in these cells and the pathway is not turned off. That’s what conveys malignancy," Sicklick said.

Study co-authors include Yin-Xiong Li, Yi Qi, Kouros Owzar and Wei Chen of Duke University Medical Center; Aruna Jayaraman, Rajesh Kannangai, Perumal Vivekanandan and Michael Torbenson of the Johns Hopkins University School of Medicine; and John Ludlow of Vesta Therapeutics.

Becky Oskin | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>