Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech research finds Swedish method of human cartilage repair shows good durability

30.03.2006


As the population ages, arthritis will become more prevalent. It would be helpful to know more about the causes and treatments of cartilage wear.



Michael Furey, Virginia Tech professor emeritus of mechanical and biomedical engineering, recently conducted the first study of wear in human cartilage. Furey will report his research and results at the 231st American Chemical Society National Meeting in Atlanta March 26-30.

Furey has been studying lubrication and wear of cartilage for 20 years. Many years ago, he took a one-year sabbatical to work at the Boston Children’s Hospital Medical Center to carry out studies of cartilage wear using bovine cartilage. He demonstrated the importance of fluid biochemistry on wear. In one example, a complex protein isolated by David Swann reduced cartilage wear by 90 percent when added to a saline reference fluid-a level equaling that of normal bovine synovial fluid.


For the last eight years, Furey and Hugo P. Veit, professor of pathobiology in the Virginia – Maryland Regional College of Veterinary Medicine at Virginia Tech, and their students have continued the research on the biochemistry of cartilage wear based on bovine cartilage.

While Furey and his group at Virginia Tech had been developing methods of measuring cartilage wear, Mats Brittberg of the Cartilage Research Unit of Goteborg University had developed methods of cartilage repair, including autologous chondrocyte implantation (ACI). But the Swedish group had no idea how long the repair would last -- days, weeks, months, years? Thus, three years ago a collaboration was born to conduct what the two groups believe is the first research of human cartilage wear under controlled "in vitro" conditions.

Brittberg’s ACI method involves taking small samples of healthy cartilage from a patient’s damaged joint, culturing the tissue in a Petri dish under controlled conditions to allow millions of chondrocyte cells to grow, and then injecting these cartilage cells into the specially-prepared damaged region. The Swedish ACI process has been used on thousands of patients and Brittberg continues his work on developing improvements in cartilage repair. "But the basic and important question remained: How long will the repair last?" Furey said.

"Funding from the Carilion Biomedical Institute supported a collaborative study with the Swedish group," said Furey. "Mats sent us cartilage biopsies from eight Swedish patients -- a sample of healthy cartilage and repaired cartilage from each. Since the specimens were very small -- only two millimeters (mm) in diameter compared to our usual six mm diameter bovine specimens -- new techniques and holders were developed by Nils Steika, the graduate student on the project and a mechanical engineering major."

"The results showed that Brittberg’s ACI method produced repairs of excellent durability," said Furey.

"But additional research is needed in this area of tissue engineering. Conventional repair methods such as abrasion arthroplasty gave significantly higher wear than that of normal cartilage. Articular cartilage, consisting of about 80 percent water, is deceptively simple. But it is very complex and still not completely understood.

"In general, papers from the medical area are strong on joint, arthritis, and biochemistry but weak on mechanics, particularly tribology -- the study of friction, wear, and lubrication," said Furey. "On the other hand, many papers on this topic in the engineering area, although strong on mechanics, are weak on or omit biochemistry. Our group has an advantage in that we fully appreciate the importance of tribology and of biochemistry in the process," he said. "For example, we have shown time and time again that there is absolutely no correlation between cartilage wear and friction -- a point that is often missed by researchers on this topic".

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>