Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech research finds Swedish method of human cartilage repair shows good durability

30.03.2006


As the population ages, arthritis will become more prevalent. It would be helpful to know more about the causes and treatments of cartilage wear.



Michael Furey, Virginia Tech professor emeritus of mechanical and biomedical engineering, recently conducted the first study of wear in human cartilage. Furey will report his research and results at the 231st American Chemical Society National Meeting in Atlanta March 26-30.

Furey has been studying lubrication and wear of cartilage for 20 years. Many years ago, he took a one-year sabbatical to work at the Boston Children’s Hospital Medical Center to carry out studies of cartilage wear using bovine cartilage. He demonstrated the importance of fluid biochemistry on wear. In one example, a complex protein isolated by David Swann reduced cartilage wear by 90 percent when added to a saline reference fluid-a level equaling that of normal bovine synovial fluid.


For the last eight years, Furey and Hugo P. Veit, professor of pathobiology in the Virginia – Maryland Regional College of Veterinary Medicine at Virginia Tech, and their students have continued the research on the biochemistry of cartilage wear based on bovine cartilage.

While Furey and his group at Virginia Tech had been developing methods of measuring cartilage wear, Mats Brittberg of the Cartilage Research Unit of Goteborg University had developed methods of cartilage repair, including autologous chondrocyte implantation (ACI). But the Swedish group had no idea how long the repair would last -- days, weeks, months, years? Thus, three years ago a collaboration was born to conduct what the two groups believe is the first research of human cartilage wear under controlled "in vitro" conditions.

Brittberg’s ACI method involves taking small samples of healthy cartilage from a patient’s damaged joint, culturing the tissue in a Petri dish under controlled conditions to allow millions of chondrocyte cells to grow, and then injecting these cartilage cells into the specially-prepared damaged region. The Swedish ACI process has been used on thousands of patients and Brittberg continues his work on developing improvements in cartilage repair. "But the basic and important question remained: How long will the repair last?" Furey said.

"Funding from the Carilion Biomedical Institute supported a collaborative study with the Swedish group," said Furey. "Mats sent us cartilage biopsies from eight Swedish patients -- a sample of healthy cartilage and repaired cartilage from each. Since the specimens were very small -- only two millimeters (mm) in diameter compared to our usual six mm diameter bovine specimens -- new techniques and holders were developed by Nils Steika, the graduate student on the project and a mechanical engineering major."

"The results showed that Brittberg’s ACI method produced repairs of excellent durability," said Furey.

"But additional research is needed in this area of tissue engineering. Conventional repair methods such as abrasion arthroplasty gave significantly higher wear than that of normal cartilage. Articular cartilage, consisting of about 80 percent water, is deceptively simple. But it is very complex and still not completely understood.

"In general, papers from the medical area are strong on joint, arthritis, and biochemistry but weak on mechanics, particularly tribology -- the study of friction, wear, and lubrication," said Furey. "On the other hand, many papers on this topic in the engineering area, although strong on mechanics, are weak on or omit biochemistry. Our group has an advantage in that we fully appreciate the importance of tribology and of biochemistry in the process," he said. "For example, we have shown time and time again that there is absolutely no correlation between cartilage wear and friction -- a point that is often missed by researchers on this topic".

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>