Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog’s ear canal may provide insights for understanding human hearing loss

30.03.2006


A rare frog that lives in rushing streams and waterfalls in east-central China is able to make itself heard above the roar of flowing water by communicating ultrasonically, scientists reported March 16 in the journal Nature. Attributes that enable the frog to hear ultrasounds are made possible by the presence of an ear canal, which most other frogs don’t have.



"Our research points out an elegant and novel solution to the problem of communication in high levels of background noise," said Peter Narins, UCLA professor of physiological science and ecology and evolutionary biology, and co-author of the study. "In addition, we now add amphibians to the small group of vertebrates (bats, whales and some rodents) that use ultrasound for communication. This study may provide a clue for understanding why humans have ear canals: to improve sensitivity to high-frequency sounds."

Amolops tormotus, also referred to as the concave-eared torrent frog, is the first non mammalian vertebrate found to be capable of producing and detecting ultrasounds for communication, much like dolphins, bats and some rodents. It does so, the researchers report, to make itself heard above the din of low-frequency sounds produced in its surroundings so that it can communicate territorial information to other males of its species. In addition to helping researchers understand how the ear evolved, the research may one day enable scientists to develop new strategies or technologies that help people to hear in environments where there is substantial background noise.


The research was federally funded by the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health, and the National Science Foundation.

"The more we can learn about the extraordinary mechanisms that Amolops and other animals have developed to hear and communicate with one another, the more fully we can understand the hearing process in humans, and the more inspired we can be in developing new treatments for hearing loss," said James F. Battey, director of the NIDCD.

Ultrasounds are high-pitched sounds more than 20 kilohertz (kHz) in frequency, exceeding the upper limit of sounds detectable by humans, and far higher than the 12 kHz frequencies that most amphibians, reptiles and birds are capable of hearing and producing. Key parts of the ear must be specially adapted to detect ultrasounds -- namely, the eardrum must be very thin to vibrate effectively at these high frequencies, and the bones of the middle ear must be extremely lightweight in order to transmit ultrasonic vibrations to the inner ear. The presence of an ear canal not only protects A. tormotus’ thin and fragile eardrum from the environment, but also lessens the distance between the eardrum and the inner ear, thus allowing the bones of the middle ear to be shorter, and as a result, lighter in weight.

Scientists have known for several years that A. tormotus males produce high-pitched, birdlike calls that extend into the ultrasonic range. What remained to be tested was whether the ultrasounds were a byproduct of the frog’s sound-production system or were heard and responded to by other males of that species. Researchers Albert S. Feng, an auditory neuroscientist at the University of Illinois, Urbana-Champaign; Narins, who studies auditory behavior, neurophysiology and mechanics; and colleagues conducted behavioral and physiological studies to investigate A. tormotus’ hearing ability.

The researchers first wanted to know whether A. tormotus can hear ultrasounds. They recorded a male’s call, split it into the audible components and ultrasonic components, and observed the responses of eight A. tormotus males to each of the split sounds. Five of the eight frogs produced calls in response to the audible, ultrasonic or both components of the species call, and three did not. Results of the behavioral observations showed that males were capable of hearing and responding to ultrasounds.

The scientists then measured the electrical activities in A. tormotus’ midbrain that is involved in sound processing and found marked electrical responses to sounds extending into the ultrasonic range -- both in the averaged response of a population of nerve cells in the brain and in single nerve cells -- confirming the frog’s capacity for hearing ultrasounds. (A different species that lives in similar environments also demonstrated an ability to hear ultrasounds.)

The next steps for the researchers will be to study A. tormotus’ eardrum, as well as hair cells, the sensory cells in the inner ear that are essential for hearing, to learn how the hair cells are able to detect ultrasounds. The scientists also are interested in learning why only the males possess recessed eardrums.

Other researchers involved in the study represent the Chinese Academy of Sciences Shanghai Institutes of Biology Sciences and Institute of Biophysics. Additional funding sources for the study include China’s State Key Basic Research and Development Plan and National Natural Sciences Foundation.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu
http://www.nidcd.nih.gov
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>