Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physician experience related to accurate identification of third heart sound

30.03.2006


Physicians with more experience are better able to detect a third heart sound that is an indicator of heart disease, according to a study on stethoscope accuracy in cardiac patients at UCSF Medical Center.



Greater experience in auscultation-- listening to body sounds with a stethoscope-- provides better outcomes in detecting pathologic heart disorders, underscoring the importance of skilled instruction in the use of a stethoscope, the researchers said. Their findings appear in the March 27, 2006, edition of The Archives of Internal Medicine.

The third heart sound, known as S3, is a low-pitched vibration that occurs in early diastole, a phase in the heart’s pumping cycle characterized by the rhythmic relaxation and dilatation of the heart chambers. While present in children and adolescents, the sound normally diminishes in adulthood.


"The presence of an S3 is associated with adverse cardiovascular outcomes in adult patients," said senior author Andrew Michaels, MD, assistant professor of cardiology at UCSF and co-director of the Cardiac Catheterization Laboratory at UCSF Medical Center. "The pathologic S3 indicates decreased compliance of the ventricles of the heart and may be the earliest sign of heart failure."

The researchers compared auscultative abilities of four groups of physicians, each representing a different level of training and experience: board-certified cardiology attending physicians, cardiology fellows, internal medicine residents and internal medicine interns. Phonocardiography, a computerized heart sound analysis, was used as a comparison.

Ninety patients between the ages of 24-91 preparing to undergo non-emergency left-sided heart catheterization for a clinical evaluation were enrolled in the study. The phonocardiography detected a third heart sound in 23 percent of these patients. The researchers found agreement between physician and phonocardiography results improved with a greater level of physician experience, with attendings and fellows having the highest amount of agreement. Interns had no significant agreement with the phonocardiography results. Phonocardiography performed better than any physician group in identifying the third heart sound.

"These findings demonstrate the capacity for physicians to effectively auscultate a clinically important S3 and we believe they can be generalized to the practicing physician and physician-in-training," said lead author Gregory Marcus, MD, cardiology fellow at UCSF. "The full realization of this capacity requires both continuing interest on the part of the learner and mentorship and teaching by those with expertise."

Patients underwent additional tests to further determine the level of heart function, including echocardiography to measure left ventricular ejection fraction (LVEF), a measure of the strength of contraction, and cardiac catheterization for measurement of left ventricular end-diastolic pressure (LVEDP). Blood levels of B-type natriuretic peptide (BNP) were also measured in each patient. BNP is a neurohormone secreted from the cells of the heart in response to stretching of the heart walls and has been shown to be clinically useful in diagnosing heart failure.

Patients with an S3 generally had a significantly higher BNP, lower LVEF and higher LVEDP than those with no S3. Once again, the findings showed the more experienced physicians had a higher correlation between detecting S3 and these clinical markers.

The researchers point out that poor performance by physicians in hearing the third heart sound may be a cause for a lack of clinician confidence in the value of using auscultation as a diagnostic tool. Current research shows medical students receive little training in auscultation and physicians are increasingly reliant on more sophisticated technology, such as echocardiograms and BNP levels to provide information about heart function. Despite the current trend, the researchers argue that the presence of an S3 sound is clinically meaningful and should be utilized more often.

"Identifying the S3 sound is important in the diagnosis of heart disease, requires relatively little time and is accessible to any physician with a stethoscope," added Marcus. "This is especially important because patients and their physicians do not always have immediate access to the latest diagnostic tools capable of detecting problems with the heart."

Vanessa deGier | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>