Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell treatment succeeds in spinal cord-injured rats

29.03.2006


Stem cells can repair damaged spinal tissue and help restore function in rats with spinal cord injuries, according to a new study. The findings may eventually lead to insights that result in new treatments for humans with spinal cord injuries.



Michael Fehlings, MD, PhD, and his colleagues at the Krembil Neuroscience Center at Toronto Western Research Institute and the University of Toronto also identified a critical window during which stem cell transplants may be effective, says the study, which appears in the March 29 issue of The Journal of Neuroscience.

"This work breaks new ground by showing that therapeutically useful stem cells can be derived from the adult brain of rodents, and that these cells can be caused to differentiate into the types of cells that are useful for repairing the damaged spinal cord," says Oswald Steward, PhD, director of the Reeve-Irvine Research Center for Spinal Cord Injury at the University of California, Irvine.


Fehlings’ team used cells from the brains of adult mice labeled with a fluorescent marker, enabling them to trace the cells after they were transplanted into rats whose spines had been crushed. Stem cells transplanted up to two weeks after the initial injury survived thanks to a cocktail of growth factors and immune-suppressing drugs the team developed. More than one-third of the transplanted cells traveled along the spinal cord, were incorporated into damaged tissue, developed into the type of cell destroyed at the injured site, and produced myelin, an insulating layer around nerve fibers that transmits signals from the brain.

An injured spinal cord loses its ability to regenerate myelin-forming cells, leading to paralysis. Fehlings showed that where stem cells restored myelin in the injured spine, rats showed some recovery and walked with more coordination.

One new aspect demonstrated by the study is that "the maximal effect of transplanting these cells is early after injury," says New York University School of Medicine professor Moses Chao, PhD. "The timing of neural stem cell application therefore is critical to successful therapy in the injured spinal cord."

One focus of future research will be to determine the reason why stem cells transplanted weeks or months later fail to function or sometimes even survive.

Each year, some 11,000 Americans sustain spinal cord injury, most often in traffic accidents. Costs of the condition approach $10 billion per year.

Sara Harris | EurekAlert!
Further information:
http://www.sfn.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>