Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cell treatment succeeds in spinal cord-injured rats


Stem cells can repair damaged spinal tissue and help restore function in rats with spinal cord injuries, according to a new study. The findings may eventually lead to insights that result in new treatments for humans with spinal cord injuries.

Michael Fehlings, MD, PhD, and his colleagues at the Krembil Neuroscience Center at Toronto Western Research Institute and the University of Toronto also identified a critical window during which stem cell transplants may be effective, says the study, which appears in the March 29 issue of The Journal of Neuroscience.

"This work breaks new ground by showing that therapeutically useful stem cells can be derived from the adult brain of rodents, and that these cells can be caused to differentiate into the types of cells that are useful for repairing the damaged spinal cord," says Oswald Steward, PhD, director of the Reeve-Irvine Research Center for Spinal Cord Injury at the University of California, Irvine.

Fehlings’ team used cells from the brains of adult mice labeled with a fluorescent marker, enabling them to trace the cells after they were transplanted into rats whose spines had been crushed. Stem cells transplanted up to two weeks after the initial injury survived thanks to a cocktail of growth factors and immune-suppressing drugs the team developed. More than one-third of the transplanted cells traveled along the spinal cord, were incorporated into damaged tissue, developed into the type of cell destroyed at the injured site, and produced myelin, an insulating layer around nerve fibers that transmits signals from the brain.

An injured spinal cord loses its ability to regenerate myelin-forming cells, leading to paralysis. Fehlings showed that where stem cells restored myelin in the injured spine, rats showed some recovery and walked with more coordination.

One new aspect demonstrated by the study is that "the maximal effect of transplanting these cells is early after injury," says New York University School of Medicine professor Moses Chao, PhD. "The timing of neural stem cell application therefore is critical to successful therapy in the injured spinal cord."

One focus of future research will be to determine the reason why stem cells transplanted weeks or months later fail to function or sometimes even survive.

Each year, some 11,000 Americans sustain spinal cord injury, most often in traffic accidents. Costs of the condition approach $10 billion per year.

Sara Harris | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>