Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists show that children think like scientists


Even preschoolers approach the world much like scientists: They are convinced that perplexing and unpredictable events can be explained, according to an MIT brain researcher’s study in the April issue of Child Development.

The way kids play and explore suggests that children believe cause-and-effect relationships in the world are governed by fundamental laws rather than by mysterious forces, said Laura E. Schulz, assistant professor of cognitive science and co-author of the study "God Does Not Play Dice: Causal Determinism and Preschoolers’ Causal Inferences."

"It’s important to understand that kids are approaching the world with deep assumptions that affect their actions and their explanations and shape what they’re able to learn next," Schulz said. "Kids’ fundamental beliefs affect their learning. Their theoretical framework affects their understanding of evidence, just as it does for scientists."

While previous research had suggested that children do not accept the idea that physical events occur spontaneously, Schulz took that concept one step farther: Would young children accept the idea that physical causes might only work some of the time?

Schulz and colleague Jessica Sommerville of the University of Washington tested 144 preschoolers to look at whether children believe that causes always produce effects. If a child believes causes produce effects deterministically, then whenever causes appear to work only some of the time, children should think some necessary cause is missing or an inhibitory cause is present.

In one study, the experimenters showed children that a switch made a toy with a metal ring light up. Half the children saw the switch work all the time; half saw that the switch only lit the ring toy some of the time. The experimenters also showed the children that removing the ring stopped the toy from lighting up. The experimenters kept the switch, gave the toy to the children and asked the children to stop the toy from lighting up.

If the switch always worked, children removed the ring. If the switch only worked some of the time, children could have removed the ring but they didn’t--they assumed that the experimenter had some additional sneaky way of stopping the effect. Children did something completely new: they picked up an object that had been hidden in the experimenter’s hand (a squeezable keychain flashlight) and used that to try to stop the toy. That is, the children didn’t just accept that the switch might work only some of the time. They looked for an explanation.

Schulz said she believes this is the first study that looks at how probabilistic evidence affects children’s reasoning about unobserved causes. The researchers found that children are conservative about unobserved causes (they don’t always think mysterious things are happening) but would rather accept unobserved causes than accept that things happen at random.

"We sometimes think that preschoolers are very concrete and work just with what they see," said Schulz, but this research suggests that preschoolers actually have quite abstract beliefs about causal relationships. "Four-year-olds have more sophisticated reasoning than adults tend to give them credit for," she said.

This work is supported by the National Science Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>