Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show that children think like scientists

29.03.2006


Even preschoolers approach the world much like scientists: They are convinced that perplexing and unpredictable events can be explained, according to an MIT brain researcher’s study in the April issue of Child Development.



The way kids play and explore suggests that children believe cause-and-effect relationships in the world are governed by fundamental laws rather than by mysterious forces, said Laura E. Schulz, assistant professor of cognitive science and co-author of the study "God Does Not Play Dice: Causal Determinism and Preschoolers’ Causal Inferences."

"It’s important to understand that kids are approaching the world with deep assumptions that affect their actions and their explanations and shape what they’re able to learn next," Schulz said. "Kids’ fundamental beliefs affect their learning. Their theoretical framework affects their understanding of evidence, just as it does for scientists."


While previous research had suggested that children do not accept the idea that physical events occur spontaneously, Schulz took that concept one step farther: Would young children accept the idea that physical causes might only work some of the time?

Schulz and colleague Jessica Sommerville of the University of Washington tested 144 preschoolers to look at whether children believe that causes always produce effects. If a child believes causes produce effects deterministically, then whenever causes appear to work only some of the time, children should think some necessary cause is missing or an inhibitory cause is present.

In one study, the experimenters showed children that a switch made a toy with a metal ring light up. Half the children saw the switch work all the time; half saw that the switch only lit the ring toy some of the time. The experimenters also showed the children that removing the ring stopped the toy from lighting up. The experimenters kept the switch, gave the toy to the children and asked the children to stop the toy from lighting up.

If the switch always worked, children removed the ring. If the switch only worked some of the time, children could have removed the ring but they didn’t--they assumed that the experimenter had some additional sneaky way of stopping the effect. Children did something completely new: they picked up an object that had been hidden in the experimenter’s hand (a squeezable keychain flashlight) and used that to try to stop the toy. That is, the children didn’t just accept that the switch might work only some of the time. They looked for an explanation.

Schulz said she believes this is the first study that looks at how probabilistic evidence affects children’s reasoning about unobserved causes. The researchers found that children are conservative about unobserved causes (they don’t always think mysterious things are happening) but would rather accept unobserved causes than accept that things happen at random.

"We sometimes think that preschoolers are very concrete and work just with what they see," said Schulz, but this research suggests that preschoolers actually have quite abstract beliefs about causal relationships. "Four-year-olds have more sophisticated reasoning than adults tend to give them credit for," she said.

This work is supported by the National Science Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>