Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show that children think like scientists

29.03.2006


Even preschoolers approach the world much like scientists: They are convinced that perplexing and unpredictable events can be explained, according to an MIT brain researcher’s study in the April issue of Child Development.



The way kids play and explore suggests that children believe cause-and-effect relationships in the world are governed by fundamental laws rather than by mysterious forces, said Laura E. Schulz, assistant professor of cognitive science and co-author of the study "God Does Not Play Dice: Causal Determinism and Preschoolers’ Causal Inferences."

"It’s important to understand that kids are approaching the world with deep assumptions that affect their actions and their explanations and shape what they’re able to learn next," Schulz said. "Kids’ fundamental beliefs affect their learning. Their theoretical framework affects their understanding of evidence, just as it does for scientists."


While previous research had suggested that children do not accept the idea that physical events occur spontaneously, Schulz took that concept one step farther: Would young children accept the idea that physical causes might only work some of the time?

Schulz and colleague Jessica Sommerville of the University of Washington tested 144 preschoolers to look at whether children believe that causes always produce effects. If a child believes causes produce effects deterministically, then whenever causes appear to work only some of the time, children should think some necessary cause is missing or an inhibitory cause is present.

In one study, the experimenters showed children that a switch made a toy with a metal ring light up. Half the children saw the switch work all the time; half saw that the switch only lit the ring toy some of the time. The experimenters also showed the children that removing the ring stopped the toy from lighting up. The experimenters kept the switch, gave the toy to the children and asked the children to stop the toy from lighting up.

If the switch always worked, children removed the ring. If the switch only worked some of the time, children could have removed the ring but they didn’t--they assumed that the experimenter had some additional sneaky way of stopping the effect. Children did something completely new: they picked up an object that had been hidden in the experimenter’s hand (a squeezable keychain flashlight) and used that to try to stop the toy. That is, the children didn’t just accept that the switch might work only some of the time. They looked for an explanation.

Schulz said she believes this is the first study that looks at how probabilistic evidence affects children’s reasoning about unobserved causes. The researchers found that children are conservative about unobserved causes (they don’t always think mysterious things are happening) but would rather accept unobserved causes than accept that things happen at random.

"We sometimes think that preschoolers are very concrete and work just with what they see," said Schulz, but this research suggests that preschoolers actually have quite abstract beliefs about causal relationships. "Four-year-olds have more sophisticated reasoning than adults tend to give them credit for," she said.

This work is supported by the National Science Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>