Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-Sea Fish Populations Boom Over the Last 15 Years

27.03.2006


Scientists make progress toward understanding mysteries surrounding animals that live in the dark recesses of the oceans

The largest habitats on Earth are located in the vast, dark plains at the bottom of the ocean. Yet because of their remoteness, many aspects of this mostly unexplored world remain mysterious. New research led by Scripps Institution of Oceanography at the University of California, San Diego, has produced a rare insight into animal populations in the deep sea.

In first-of-its-kind research published in the March issue of the journal Ecology, David Bailey, Henry Ruhl and Ken Smith of Scripps analyzed fish and other marine animals over a 15-year period in the deep sea of the eastern North Pacific Ocean. At the site, the source of one of the longest time-series studies of any abyssal area in the world, the scientists found a threefold increase in fish abundance, an upsurge that appears to have been driven by an increase in the food available to the animals.



Bailey says the study is a unique glimpse into fish populations undisturbed by human influence.

"This is a rare study of a large marine fish population that doesn’t get commercially fished," said Bailey. "Other fish populations have their abundances, body sizes and life histories altered by fisheries activities, so our study probably gives us some information about how fish communities work when they are not driven by human exploitation."

The Ecology study follows research published in 2004 by Ruhl and Smith that showed that significant changes in the deep-sea environment were likely driven by changes at the surface of the ocean by El Niño and La Niña events (See "Scripps Researchers Document Significant Changes in the Deep Sea" at: "http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=640).

Such oceanographic events, along with longer-term shifting called the Pacific Decadal Oscillation, can bring more nutrients to surface waters. While animals near the surface can rapidly benefit, it can be months to years later for changes to extend to the ocean bottom, leading to a proliferation of bottom-dwelling invertebrate animals that make up some part of the food supply of deep-sea fishes.

This appears to have been the case from 1989 to 2004, when the researchers found a nearly three-fold increase in deep-sea fish called grenadiers, animals related to cod that are also known as "rattails." Species included Coryphaenoides armatus, or abyssal grenadier, an animal found worldwide at depths of 2,000 meters and greater, and Coryphaenoides yaquinae, a fish of which little is known and that is found only in the deep North Pacific.

Grenadiers eat a range of foods, from the dead bodies of fish and whales to invertebrates such as worms and crustaceans. The most commonly observed animals on the seafloor include sea cucumbers, sea urchins and brittle stars, and these appeared to form part of the grenadiers’ diet. The researchers used the abundances of these animals as an indicator of food supply to the fish. Large changes in the abundances of these animals were followed by changes in the numbers of fish, with both groups increasing in number over the 15-year study.

The researchers say their results indicate that animals in the deep sea live in an environment in which food supply drives population levels, called a "bottom-up control," rather than a "top-down control" situation in which predator pressure controls prey abundances.

"The predominant trend had been that people thought that fish have a powerful effect on their environment, and they drive the changes in everything else," said Bailey, a postdoctoral researcher at Scripps and lead author of the study. "What we’ve seen is the reverse, that fish are responding to a change in their habitat. We think that a lot of fish communities are fundamentally changed by fishing. Our study is really nice in that we are working on populations that have never been fished, so their population dynamics can be seen being driven by natural processes."

Comparing these observations to those for shallow water, the researchers speculate that deep-ocean and shallow-water fish communities’ work differently. A possible reason is that the deep ocean is dependent for its food on material falling from the communities nearer the sea surface; this food supply is smaller and less predictable than that available to most shallow-water fish. The effects of this difference on the dynamics of fish communities are not known, and are being explored using mathematical models as the investigators move forward with this project.

Information for the research paper was derived from "Station M," a study site 136 miles west of the California coast that has been explored by members of Smith’s laboratory since 1989. The researchers obtained images of the animals through a camera mounted on a sled towed across the ocean floor at more than 13,000 feet deep.

The research was supported by the National Science Foundation, the University of California, Scripps Institution of Oceanography and a Marie Curie Outgoing International Fellowship (European Union).

Note to broadcast and cable producers: UCSD provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:
http://scrippsnews.ucsd.edu/article_detail.cfm?article_num=721
http://scripps.ucsd.edu
http://scrippsnews.ucsd.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>