Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study outlines genetic differences between potential pandemic influenza strains

21.03.2006


An analysis of H5N1 influenza samples in Southeast Asia shows not only how the two strains that have caused human disease are related but also that they belong to two different, distinct genetic subgroups. Researchers from the Centers for Disease Control and Prevention report their findings today at the International Conference on Emerging Infectious Diseases.



"As the virus continues its geographic expansion, it is also undergoing genetic diversity expansion," says Rebecca Garten, a researcher on the study. "Back in 2003 we only had one genetically distinct population of H5N1 with the potential to cause a human pandemic, now we have two."

Garten and her colleagues conducted a phylogenetic analysis of over 300 H5N1 virus samples taken from both avian and human sources from 2003 through the summer of 2005. They correlated the genetic makeup of viruses to the physical characteristics of viruses, including surface proteins and receptor sites, to determine where each virus should be placed on the H5N1 family tree.


Not all H5N1 viruses are genetically the same. Over the years researchers have identified different genetic groups called genotypes.

The majority of the viruses, including all the human cases, belonged to genotype Z. There were also small numbers of viruses isolated from avian populations that were genotype V or W or recently identified genotype G.

That is where the similarity between the two human strains ended. Previous research published by the World Health Organization has further classified genotype Z into subgroups called clades. In 2003 and 2004, clade 1 viruses were primarily responsible for outbreaks, including all infections in human, in Viet Nam, Cambodia and Thailand.

In 2005 a second strain of H5N1 began causing disease in humans in Indonesia. Analysis of the Indonesia strain found that it belongs to genotype Z clade 2, a subgroup of the virus that previously was not known to cause human disease. Clade 1 and clade 2 viruses may share the same ancestor but are different and can be be likened to cousins.

What this means, says Garten, is that the pool of H5N1 candidates with the potential to cause a human influenza pandemic is getting more genetically diverse, which makes studying the virus more complex and heightens the need for increased surveillance. She expects further continued diversity in the future.

"Change is the only constant. Only time will tell whether the virus evolves or mutates in such a way that it can be transmitted from human to human efficiently," says Garten.

Jim Sliwa | EurekAlert!
Further information:
http://www.iceid.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>