Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering How Bone Marrow Stromal Cells Can Potentially Regenerate Brain Tissue

17.03.2006


Study Offers Piece of “Missing Link” Needed in Understanding Receptor Function—Possibly Providing Safe, Ethical Source for Replacing Brain Cells, Reports March Journal of Nuclear Medicine



Japanese researchers have found a piece of the “missing link” about how bone marrow stromal cells restore lost neurologic function when transplanted into animals exhibiting central nervous system disorders, according to a study in the March issue of the Journal of Nuclear Medicine.

“Our study showed that cell transplantation therapy may improve brain receptor function in patients who suffered from cerebral stroke, improving their neurological symptoms,” said Satoshi Kuroda, M.D., Ph.D., who is with the department of neurosurgery at Hokkaido University School of Medicine in Sapporo, Japan. “How the transplanted bone marrow stromal cells restore the lost neurologic function is not clear,” added the co-author of “Improved Expression of ã-Aminobutyric Acid Receptor in Mice With Cerebral Infarct and Transplanted Bone Marrow Stromal Cells: An Autoradiographic and Histologic Analysis.”


What researchers do know is that cells found in an adult’s bone marrow—stromal cells—may provide a safe, ethical source for replacing brain cells lost to neurological disorders such as Alzheimer’s and Parkinson’s diseases. Studies have shown that cells taken from adult human bone marrow may possibly be converted into neural cells—cells with the ability to convert to any type of cell found in the body—that could then be transplanted into the brain.

Using autoradiography (a technique that uses X-ray film to visualize radioactively labeled molecules) and fluorescence immunohistochemistry (the testing of sections of tissue for specific proteins by attaching them with specific antibodies), the researchers examined the binding of a radioactive molecule with a specific receptor protein in animals with cerebral infarcts or strokes. Their findings “clearly showed” that bone marrow stromal cells “may contribute to neural tissue regeneration by migrating toward the periinfarct area and acquiring the neuron-specific receptor function,” reports the JNM article.

The authors emphasized that “it is essential to clarify the underlying mechanism before undertaking clinical trials with stem cell–based approaches for patients with cerebral stoke.” Their results “may help fill in a piece of the ‘missing link’ between histologic findings and functional recovery in animal experiments and may be useful for further stem cell research.” More research needs to be done “to fully clarify the mechanism of cell transplantation therapy for neurological disorders,” said Kuroda. He added, “When the efficacy, mechanism and safety of cell transplantation therapy are established, we will be able to apply it to clinical situations.”

Molecular imaging and nuclear medicine are useful tools that allow the visualization of different kinds of neuronal functions to evaluate cell transplantation therapy in both experimental and clinical situations, said Kuroda. “It is very difficult to visualize neuronal functions; therefore, we chose receptor imaging to assess the effects of cell transplantation therapy on cerebral stroke,” he explained.

Besides Kuroda, co-authors of “Improved Expression of ?-Aminobutyric Acid Receptor in Mice With Cerebral Infarct and Transplanted Bone Marrow Stromal Cells: An Autoradiographic and Histologic Analysis” include Hideo Shichinohe, M.D., Ph.D., Shunsuke Yano, M.D., Ph.D., Kazutoshi Hida, M.D., Ph.D., and Yoshinobu Iwasaki, M.D., Ph.D., all with the department of neurosurgery at Hokkaido University Graduate School of Medicine in Sapporo, Japan; and Takako Ohnishi, MSc, and Hiroshi Tamagami, MSc, both in the research and development division, Research Center, Nihon Medi-Physics Co. Ltd., Sodegaura, Japan.

About SNM

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances; provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed resource in the field; sponsor research grants, fellowships and awards; and host the premier annual meeting for medical imaging. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>