Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering How Bone Marrow Stromal Cells Can Potentially Regenerate Brain Tissue

17.03.2006


Study Offers Piece of “Missing Link” Needed in Understanding Receptor Function—Possibly Providing Safe, Ethical Source for Replacing Brain Cells, Reports March Journal of Nuclear Medicine



Japanese researchers have found a piece of the “missing link” about how bone marrow stromal cells restore lost neurologic function when transplanted into animals exhibiting central nervous system disorders, according to a study in the March issue of the Journal of Nuclear Medicine.

“Our study showed that cell transplantation therapy may improve brain receptor function in patients who suffered from cerebral stroke, improving their neurological symptoms,” said Satoshi Kuroda, M.D., Ph.D., who is with the department of neurosurgery at Hokkaido University School of Medicine in Sapporo, Japan. “How the transplanted bone marrow stromal cells restore the lost neurologic function is not clear,” added the co-author of “Improved Expression of ã-Aminobutyric Acid Receptor in Mice With Cerebral Infarct and Transplanted Bone Marrow Stromal Cells: An Autoradiographic and Histologic Analysis.”


What researchers do know is that cells found in an adult’s bone marrow—stromal cells—may provide a safe, ethical source for replacing brain cells lost to neurological disorders such as Alzheimer’s and Parkinson’s diseases. Studies have shown that cells taken from adult human bone marrow may possibly be converted into neural cells—cells with the ability to convert to any type of cell found in the body—that could then be transplanted into the brain.

Using autoradiography (a technique that uses X-ray film to visualize radioactively labeled molecules) and fluorescence immunohistochemistry (the testing of sections of tissue for specific proteins by attaching them with specific antibodies), the researchers examined the binding of a radioactive molecule with a specific receptor protein in animals with cerebral infarcts or strokes. Their findings “clearly showed” that bone marrow stromal cells “may contribute to neural tissue regeneration by migrating toward the periinfarct area and acquiring the neuron-specific receptor function,” reports the JNM article.

The authors emphasized that “it is essential to clarify the underlying mechanism before undertaking clinical trials with stem cell–based approaches for patients with cerebral stoke.” Their results “may help fill in a piece of the ‘missing link’ between histologic findings and functional recovery in animal experiments and may be useful for further stem cell research.” More research needs to be done “to fully clarify the mechanism of cell transplantation therapy for neurological disorders,” said Kuroda. He added, “When the efficacy, mechanism and safety of cell transplantation therapy are established, we will be able to apply it to clinical situations.”

Molecular imaging and nuclear medicine are useful tools that allow the visualization of different kinds of neuronal functions to evaluate cell transplantation therapy in both experimental and clinical situations, said Kuroda. “It is very difficult to visualize neuronal functions; therefore, we chose receptor imaging to assess the effects of cell transplantation therapy on cerebral stroke,” he explained.

Besides Kuroda, co-authors of “Improved Expression of ?-Aminobutyric Acid Receptor in Mice With Cerebral Infarct and Transplanted Bone Marrow Stromal Cells: An Autoradiographic and Histologic Analysis” include Hideo Shichinohe, M.D., Ph.D., Shunsuke Yano, M.D., Ph.D., Kazutoshi Hida, M.D., Ph.D., and Yoshinobu Iwasaki, M.D., Ph.D., all with the department of neurosurgery at Hokkaido University Graduate School of Medicine in Sapporo, Japan; and Takako Ohnishi, MSc, and Hiroshi Tamagami, MSc, both in the research and development division, Research Center, Nihon Medi-Physics Co. Ltd., Sodegaura, Japan.

About SNM

SNM is an international scientific and professional organization of more than 16,000 members dedicated to promoting the science, technology and practical applications of molecular and nuclear imaging to diagnose, manage and treat diseases in women, men and children. Founded more than 50 years ago, SNM continues to train physicians, technologists, scientists, physicists, chemists and radiopharmacists in state-of-the-art imaging procedures and advances; provide essential resources for health care practitioners and patients; publish the most prominent peer-reviewed resource in the field; sponsor research grants, fellowships and awards; and host the premier annual meeting for medical imaging. SNM members have introduced—and continue to explore—biological and technological innovations in medicine that noninvasively investigate the molecular basis of diseases, benefiting countless generations of patients. SNM is based in Reston, Va.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>