Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Picower research finds unexpected activity in visual cortex

17.03.2006


For years, neural activity in the brain’s visual cortex was thought to have only one job: to create visual perceptions. A new study by researchers at MIT’s Picower Institute for Learning and Memory shows that visual cortical activity can serve another purpose--connecting visual experience with non-visual events.



The study, slated to appear in the March 17 issue of Science, implies that sensory parts of the brain may be able to accomplish more complex tasks than previously imagined, according to co-authors Marshall G. Shuler, MIT research affiliate, and Mark F. Bear, professor of brain and cognitive sciences. The findings have implications for understanding how our brains imbue sensory experience with behavioral meaning.

Electrodes were implanted in the visual cortex of adult rats. Initially, as expected, their neurons responded only to light. However, as the animal repeatedly experienced a light stimulus with the delivery of a drop of water, the neuronal activity changed. And in many cases, the neuron continued to be active after the light was extinguished until the water reward was delivered.


The neuron’s activity, the researchers said, was related to the anticipation of the reward. What’s more, neurons continued to predict reward times associated with the light cues even in different situations. "This is a strong indication that learning was actually occurring in the visual cortex," Shuler said.

Brain activity corresponding to "reward timing has been observed in higher-order brain regions, but never in the primary visual cortex," Bear said. "No one would have expected to see it there because the visual cortex is thought to be a detector of the physical features of the environment, with responses limited to those features to ensure that sensory processing is reliable and reproducible."

"These neurons were not acting in response to what the stimuli were, but what they had come to mean," Shuler said.

The researchers are not sure whether the animal perceives this brain activity, but they plan to explore how it may guide appropriate behaviors.

"We are pretty optimistic we can uncover the mechanism" underlying this finding, Bear said. "There is a lot going on in the brain that we have been unaware of, studying anesthetized animals all these years."

This work was supported by the Howard Hughes Medical Institute.

Patti Richards | MIT News Office
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>