Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pepper component hot enough to trigger suicide in prostate cancer cells

16.03.2006


Capsaicin, the stuff that turns up the heat in jalapeños, not only causes the tongue to burn, it also drives prostate cancer cells to kill themselves, according to studies published in the March 15 issue of Cancer Research.



According to a team of researchers from the Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, in collaboration with colleagues from UCLA, the pepper component caused human prostate cancer cells to undergo programmed cell death or apoptosis.

Capsaicin induced approximately 80 percent of prostate cancer cells growing in mice to follow the molecular pathways leading to apoptosis. Prostate cancer tumors treated with capsaicin were about one-fifth the size of tumors in non-treated mice.


"Capsaicin had a profound anti-proliferative effect on human prostate cancer cells in culture," said Sören Lehmann, M.D., Ph.D., visiting scientist at the Cedars-Sinai Medical Center and the UCLA School of Medicine. "It also dramatically slowed the development of prostate tumors formed by those human cell lines grown in mouse models."

Lehmann estimated that the dose of pepper extract fed orally to the mice was equivalent to giving 400 milligrams of capsaicin three times a week to a 200 pound man, roughly equivalent to between three and eight fresh habañera peppers – depending on the pepper’s capsaicin content. Habañeras are the highest rated pepper for capsaicin content according to the Scoville heat index. Habañero peppers, which are native to the Yucatan, typically contain up to 300,000 Scoville units. The more popular Jalapeño variety from Oaxaca, Mexico, and the southwest United States, contains 2,500 to 5,000 Scoville units.

As described in their study, the scientists observed that capsaicin inhibited the activity of NF-kappa Beta, a molecular mechanism that participates in the pathways leading to apoptosis in many cell types.

Apoptosis is a normal cellular event in many tissues that maintains a balance between newer replacement cells and aged or worn cells. In contrast, cancer cells seek to be immortal and often dodge apoptosis by mutating or deregulating the genes that participate in programmed cell death.

"When we noticed that capsaicin affected NF-kappa Beta, that was an indication that we might expect some of the apoptotic proteins to be affected," said the study’s senior author, Phillip Koeffler, M.D., director of Hematology and Oncology, Cedars-Sinai Medical Center, and professor at UCLA.

The pepper extract also curbed the growth of prostate cancer cells through regulation of androgen receptors, the steroid activated proteins that control expression of specific growth relating genes.

In prostate cancer cells whose growth is dependent on testosterone, the predominant male sex steroid, capsaicin reduced cell proliferation in a dose-dependent manner. Increased concentrations of capsaicin caused more prostate cancer cells to freeze in a non-proliferative state, called G0/G1.

Prostate cancer cells that are androgen independent reacted to capsaicin in a similar manner. Capsaicin reduced the amount of androgen receptor that the tumor cells produced, but did not interfere with normal movement of androgen receptor into the nucleus of the cancer cells where the steroid receptor acts to regulate androgen target genes such as prostate specific antigen (PSA). Capsaicin also interfered with the action of androgen receptors even in cells that were modified to produce excess numbers of androgen receptors.

The hot pepper component also reduced cancer cell production of PSA, a protein that often is produced in high quantities by prostate tumors and can signal the presence of prostate cancer in men. PSA content in the blood of men is used as a diagnostic prostate cancer screening measure. PSA is regulated by androgens, and capsaicin limited androgen-induced increases of PSA in the cancer cell lines.

More men in the United States develop prostate cancer than any other type of malignancy. Every year, more than 232,000 new cases of prostate cancer are diagnosed in the U.S., and more than 680,000 develop the disease worldwide. Approximately 30,000 men die from prostate cancer in the U.S. each year, which is about 13 percent of all new cases. Worldwide, there are 221,000 deaths – approximately 31 per cent – among men with prostate cancer.

Lehman conducted the studies in Koeffler’s laboratory in collaboration with UCLA cancer researchers Akio Mori, James O’Kelly, Takishi Kumagai, Julian Desmond, Milena Pervan, and William McBride. Mosahiro Kizaki, a former post-doctoral fellow in Koeffler’s laboratory who initiated the capsaicin studies, is currently at the Keio University School of Medicine, Tokyo, Japan.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>