Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alzheimer’s study first to explain death of brain cells

16.03.2006


Study is giant leap towards prevention and treatment



Researchers at Children’s Hospital & Research Center at Oakland (CHRCO) have published a new study that is the first to explain how brain cells die in patients with Alzheimer’s Disease. This discovery is an important first step to helping researchers devise ways to slow, prevent and eventually cure a disease that affects an estimated 4.5 million Americans.

In a study published in the February 28th issue of the Proceedings of the National Academy of Sciences, lead scientist Hani Atamna, Ph.D., found that alterations in the production of heme (a molecule that contains iron) may be the key to understanding why excessive amyloid-beta is toxic to brain cells. Dr. Atamna had previously discovered that Alzheimer’s patients have abnormal amounts of heme in their brains. In new research results, Atamna’s team showed that amyloid-beta readily binds with heme to form a compound that can be flushed from cells. When there is insufficient heme or too much amyloid-beta, however, the amyloid-beta forms large toxic "clumps" that the cell cannot dissolve and eliminate.


Though heme binding with amyloid-beta can be beneficial, if too much heme is bound up with amyloid-beta, there may be insufficient heme available for the cell to properly function. When this happens, the cell’s mitochondria, which are the tiny structures inside brain cells that produce the energy the cells need to function, begin to decay. Dr. Atamna refers to this phenomenon as a "functional heme deficiency" because the cells are still forming heme, but it is trapped within an amyloid-beta/heme compound.

When they examined the heme/ amyloid-beta compound researchers in the Atamna laboratory were surprised to discover it was a peroxidase--a type of enzyme that reacts harmfully with biological materials essential for proper brain function such as serotonin and L-DOPA. Dr. Atamna believes that the combination of functional heme deficiency, which harms mitochondria needed to produce energy, together with the increase in oxidative damage caused by the peroxidase, is what eventually kills the cell.

"Until now, we didn’t understand all the factors that trigger Alzheimer’s disease. The discovery of the formation of amyloid-beta peroxidase provides a clear picture of why cells die in the brain of Alzheimer’s patients. Our next challenge is to develop drugs that directly and selectively target the excessive peroxidase of amyloid-beta, which could lead to the first significant therapy for Alzheimer’s disease."

Venita Robinson | EurekAlert!
Further information:
http://www.cho.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>