Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alzheimer’s study first to explain death of brain cells


Study is giant leap towards prevention and treatment

Researchers at Children’s Hospital & Research Center at Oakland (CHRCO) have published a new study that is the first to explain how brain cells die in patients with Alzheimer’s Disease. This discovery is an important first step to helping researchers devise ways to slow, prevent and eventually cure a disease that affects an estimated 4.5 million Americans.

In a study published in the February 28th issue of the Proceedings of the National Academy of Sciences, lead scientist Hani Atamna, Ph.D., found that alterations in the production of heme (a molecule that contains iron) may be the key to understanding why excessive amyloid-beta is toxic to brain cells. Dr. Atamna had previously discovered that Alzheimer’s patients have abnormal amounts of heme in their brains. In new research results, Atamna’s team showed that amyloid-beta readily binds with heme to form a compound that can be flushed from cells. When there is insufficient heme or too much amyloid-beta, however, the amyloid-beta forms large toxic "clumps" that the cell cannot dissolve and eliminate.

Though heme binding with amyloid-beta can be beneficial, if too much heme is bound up with amyloid-beta, there may be insufficient heme available for the cell to properly function. When this happens, the cell’s mitochondria, which are the tiny structures inside brain cells that produce the energy the cells need to function, begin to decay. Dr. Atamna refers to this phenomenon as a "functional heme deficiency" because the cells are still forming heme, but it is trapped within an amyloid-beta/heme compound.

When they examined the heme/ amyloid-beta compound researchers in the Atamna laboratory were surprised to discover it was a peroxidase--a type of enzyme that reacts harmfully with biological materials essential for proper brain function such as serotonin and L-DOPA. Dr. Atamna believes that the combination of functional heme deficiency, which harms mitochondria needed to produce energy, together with the increase in oxidative damage caused by the peroxidase, is what eventually kills the cell.

"Until now, we didn’t understand all the factors that trigger Alzheimer’s disease. The discovery of the formation of amyloid-beta peroxidase provides a clear picture of why cells die in the brain of Alzheimer’s patients. Our next challenge is to develop drugs that directly and selectively target the excessive peroxidase of amyloid-beta, which could lead to the first significant therapy for Alzheimer’s disease."

Venita Robinson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>