Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist furthering discussion of soil carbon decomposition

09.03.2006


Study addresses feedbacks to climate change



Significantly more carbon is stored in the world’s soils than is present in the atmosphere. In a process called a "positive feedback," global warming may stimulate decomposition of soil organic matter, thus releasing heat-trapping carbon dioxide gas to the atmosphere, possibly causing the rate of global warming to increase further. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. Eric Davidson, a senior scientist at the Woods Hole Research Center, has written a review paper that clarifies the issues regarding temperature sensitivity of decomposition within a framework that helps to focus the ensuing debate and research. Co-authored with Ivan Janssens of the University of Antwerpen (Belgium), the study is being published in an upcoming issue of Nature.

According to Dr. Davidson, interest in this topic is high because of its importance in the global carbon cycle and potential feedbacks to climate change. "The arctic, in particular, is experiencing very rapid warming, causing permafrost to melt and some peatlands to dry out, thus potentially exposing huge stocks of previously frozen and waterlogged carbon to decomposition. We need to understand how much of this carbon that is stored in soils, peatlands, and permafrost is susceptible to loss in a warmer world. If you unplug your refrigerator, you can demonstrate that your food, which is basically organic matter, spoils more quickly when it is warm. However, because the soil is a complex mixture of minerals and organic matter derived from plant leaves and roots, soil scientists and ecologists have had difficulty teasing out the conditions and types of organic matter that respond significantly to temperature changes." The review paper by Davidson and Janssens sets forth a description of how both the chemical complexity of carbon molecules and the soil conditions in which they are found determine the rates at which they decompose.


While most of the research results that Davidson and Janssens review come from studies of forests and farms in temperate regions, they conclude that research on the temperature sensitivity of decomposition should be broadened to include peatlands, wetlands and permafrost in boreal and arctic regions, where huge stocks of soil carbon are susceptible to a rapidly changing climate Davidson says, "We know that decomposition of organic matter responds to temperature, but we need to establish a common conceptual framework to demonstrate the ’what, where, and how fast’ of soil carbon decomposition. Hopefully, our paper will help clarify those issues and will stimulate more research where it is most urgently needed – the potential ’time bomb’ of decomposition of carbon in peatland and permafrost."

Davidson’s research on soil carbon has been funded by the Department of Energy, the National Science Foundation, and NASA.

Dr. Davidson is an ecologist and soil scientist interested in the role of soil microorganisms as processors of carbon and nitrogen. He has studied the transfer of carbon and nitrogen gases from the soil to the atmosphere, where they contribute to warming of the earth. His research addresses how human management of the land affects this transfer of greenhouse gases. Dr. Davidson has held positions as National Research Council Associate at the NASA Ames Research Center and as Post-Doctoral Research Associate in Soil Microbiology at the University of California, Berkeley. He earned his doctorate in forestry at North Carolina State University.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>