Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist furthering discussion of soil carbon decomposition

09.03.2006


Study addresses feedbacks to climate change



Significantly more carbon is stored in the world’s soils than is present in the atmosphere. In a process called a "positive feedback," global warming may stimulate decomposition of soil organic matter, thus releasing heat-trapping carbon dioxide gas to the atmosphere, possibly causing the rate of global warming to increase further. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. Eric Davidson, a senior scientist at the Woods Hole Research Center, has written a review paper that clarifies the issues regarding temperature sensitivity of decomposition within a framework that helps to focus the ensuing debate and research. Co-authored with Ivan Janssens of the University of Antwerpen (Belgium), the study is being published in an upcoming issue of Nature.

According to Dr. Davidson, interest in this topic is high because of its importance in the global carbon cycle and potential feedbacks to climate change. "The arctic, in particular, is experiencing very rapid warming, causing permafrost to melt and some peatlands to dry out, thus potentially exposing huge stocks of previously frozen and waterlogged carbon to decomposition. We need to understand how much of this carbon that is stored in soils, peatlands, and permafrost is susceptible to loss in a warmer world. If you unplug your refrigerator, you can demonstrate that your food, which is basically organic matter, spoils more quickly when it is warm. However, because the soil is a complex mixture of minerals and organic matter derived from plant leaves and roots, soil scientists and ecologists have had difficulty teasing out the conditions and types of organic matter that respond significantly to temperature changes." The review paper by Davidson and Janssens sets forth a description of how both the chemical complexity of carbon molecules and the soil conditions in which they are found determine the rates at which they decompose.


While most of the research results that Davidson and Janssens review come from studies of forests and farms in temperate regions, they conclude that research on the temperature sensitivity of decomposition should be broadened to include peatlands, wetlands and permafrost in boreal and arctic regions, where huge stocks of soil carbon are susceptible to a rapidly changing climate Davidson says, "We know that decomposition of organic matter responds to temperature, but we need to establish a common conceptual framework to demonstrate the ’what, where, and how fast’ of soil carbon decomposition. Hopefully, our paper will help clarify those issues and will stimulate more research where it is most urgently needed – the potential ’time bomb’ of decomposition of carbon in peatland and permafrost."

Davidson’s research on soil carbon has been funded by the Department of Energy, the National Science Foundation, and NASA.

Dr. Davidson is an ecologist and soil scientist interested in the role of soil microorganisms as processors of carbon and nitrogen. He has studied the transfer of carbon and nitrogen gases from the soil to the atmosphere, where they contribute to warming of the earth. His research addresses how human management of the land affects this transfer of greenhouse gases. Dr. Davidson has held positions as National Research Council Associate at the NASA Ames Research Center and as Post-Doctoral Research Associate in Soil Microbiology at the University of California, Berkeley. He earned his doctorate in forestry at North Carolina State University.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>