Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist furthering discussion of soil carbon decomposition

09.03.2006


Study addresses feedbacks to climate change



Significantly more carbon is stored in the world’s soils than is present in the atmosphere. In a process called a "positive feedback," global warming may stimulate decomposition of soil organic matter, thus releasing heat-trapping carbon dioxide gas to the atmosphere, possibly causing the rate of global warming to increase further. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. Eric Davidson, a senior scientist at the Woods Hole Research Center, has written a review paper that clarifies the issues regarding temperature sensitivity of decomposition within a framework that helps to focus the ensuing debate and research. Co-authored with Ivan Janssens of the University of Antwerpen (Belgium), the study is being published in an upcoming issue of Nature.

According to Dr. Davidson, interest in this topic is high because of its importance in the global carbon cycle and potential feedbacks to climate change. "The arctic, in particular, is experiencing very rapid warming, causing permafrost to melt and some peatlands to dry out, thus potentially exposing huge stocks of previously frozen and waterlogged carbon to decomposition. We need to understand how much of this carbon that is stored in soils, peatlands, and permafrost is susceptible to loss in a warmer world. If you unplug your refrigerator, you can demonstrate that your food, which is basically organic matter, spoils more quickly when it is warm. However, because the soil is a complex mixture of minerals and organic matter derived from plant leaves and roots, soil scientists and ecologists have had difficulty teasing out the conditions and types of organic matter that respond significantly to temperature changes." The review paper by Davidson and Janssens sets forth a description of how both the chemical complexity of carbon molecules and the soil conditions in which they are found determine the rates at which they decompose.


While most of the research results that Davidson and Janssens review come from studies of forests and farms in temperate regions, they conclude that research on the temperature sensitivity of decomposition should be broadened to include peatlands, wetlands and permafrost in boreal and arctic regions, where huge stocks of soil carbon are susceptible to a rapidly changing climate Davidson says, "We know that decomposition of organic matter responds to temperature, but we need to establish a common conceptual framework to demonstrate the ’what, where, and how fast’ of soil carbon decomposition. Hopefully, our paper will help clarify those issues and will stimulate more research where it is most urgently needed – the potential ’time bomb’ of decomposition of carbon in peatland and permafrost."

Davidson’s research on soil carbon has been funded by the Department of Energy, the National Science Foundation, and NASA.

Dr. Davidson is an ecologist and soil scientist interested in the role of soil microorganisms as processors of carbon and nitrogen. He has studied the transfer of carbon and nitrogen gases from the soil to the atmosphere, where they contribute to warming of the earth. His research addresses how human management of the land affects this transfer of greenhouse gases. Dr. Davidson has held positions as National Research Council Associate at the NASA Ames Research Center and as Post-Doctoral Research Associate in Soil Microbiology at the University of California, Berkeley. He earned his doctorate in forestry at North Carolina State University.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>