Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists provide new evidence for cellular cause of SIDS

09.03.2006


University of Chicago researchers and colleagues have found strong support that a disturbance of a specific neurochemical can lead to sudden infant death syndrome, the primary cause of death before age 1 in the United States. Approximately 3,000 infants die each year from SIDS, according to the Centers for Disease Control and Prevention.



In the March 8, 2006, issue of the Journal of Neuroscience, researchers describe what happens during hypoxia when levels of the hormone serotonin are disturbed in pacemaker cells -- the specific group of neurons they previously showed to be responsible for gasping, which resets the normal breathing pattern for babies. Scientists found that normal serotonin levels are needed in these respiratory pacemakers to induce gasping and ignite auto-resuscitation.

"This confirms our previous studies," said lead author Jan-Marino Ramirez, a professor of organismal biology and anatomy. "Now we’ve just better defined the players in the system."


In a paper published last year in the journal Neuron, Ramirez’s work found that sodium-driven pacemaker cells controlled gasping. This work in tissue slices was confirmed in a study published last month by University of Bristol researchers who found the same results in rats.

Scientists knew that SIDS victims had disturbed levels of serotonin in areas critical for respiration. Since serotonin regulates the sodium channels in pacemaker cells, Ramirez’s research team examined more closely serotonin levels in sodium-driven pacemaker neurons in the breathing center.

When researchers removed serotonin from these pacemaker cells, the gasping drastically decreased, from typically about 20 gasps to just two or three gasps -- not enough for the baby to awaken.

"It indicates that if there’s a problem with serotonin, the gasping is gone," Ramirez said. "And when these children don’t gasp, they don’t wake up."

According to the researcher, when the body senses a lack of oxygen, it shuts down most of the cellular respiratory network and focuses its energy on gasping, which is modulated solely by sodium-driven pacemaker neurons. If that specific neuron is blocked, for whatever reason, the body cannot gasp.

This means there may be nothing wrong with a baby’s breathing under normal conditions, but if the baby goes into hypoxia from a blocked airway or because the baby sleeps on its tummy and does not receive sufficient oxygen, the child needs the sodium-driven pacemakers in order to gasp, which wakes the baby and initiates movement or crying.

"Gasping is an important arousal or auto-resuscitation mechanism," Ramirez said. It resets a baby’s normal breathing rhythm and also alerts the baby as well as the mother that something is wrong.

"During normal breathing, it’s a complicated network. However, the network becomes more vulnerable to situations like hypoxia, because under these conditions, respiration relies on only one group of pacemakers that become the critical drivers of [breathing] rhythm," Ramirez said.

Disturbed serotonin levels are also implicated in many psychiatric conditions, such as depression, bipolar disorder and attention deficit disorder. According to Ramirez, adults suffering with these types of conditions may be survivors of SIDS.

Ramirez and his colleagues now are looking more closely at the effects of different levels of serotonin, as well as the hormone norepinephrine, and exactly how much of each is necessary to keep auto-resuscitation in tact.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>