Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists provide new evidence for cellular cause of SIDS

09.03.2006


University of Chicago researchers and colleagues have found strong support that a disturbance of a specific neurochemical can lead to sudden infant death syndrome, the primary cause of death before age 1 in the United States. Approximately 3,000 infants die each year from SIDS, according to the Centers for Disease Control and Prevention.



In the March 8, 2006, issue of the Journal of Neuroscience, researchers describe what happens during hypoxia when levels of the hormone serotonin are disturbed in pacemaker cells -- the specific group of neurons they previously showed to be responsible for gasping, which resets the normal breathing pattern for babies. Scientists found that normal serotonin levels are needed in these respiratory pacemakers to induce gasping and ignite auto-resuscitation.

"This confirms our previous studies," said lead author Jan-Marino Ramirez, a professor of organismal biology and anatomy. "Now we’ve just better defined the players in the system."


In a paper published last year in the journal Neuron, Ramirez’s work found that sodium-driven pacemaker cells controlled gasping. This work in tissue slices was confirmed in a study published last month by University of Bristol researchers who found the same results in rats.

Scientists knew that SIDS victims had disturbed levels of serotonin in areas critical for respiration. Since serotonin regulates the sodium channels in pacemaker cells, Ramirez’s research team examined more closely serotonin levels in sodium-driven pacemaker neurons in the breathing center.

When researchers removed serotonin from these pacemaker cells, the gasping drastically decreased, from typically about 20 gasps to just two or three gasps -- not enough for the baby to awaken.

"It indicates that if there’s a problem with serotonin, the gasping is gone," Ramirez said. "And when these children don’t gasp, they don’t wake up."

According to the researcher, when the body senses a lack of oxygen, it shuts down most of the cellular respiratory network and focuses its energy on gasping, which is modulated solely by sodium-driven pacemaker neurons. If that specific neuron is blocked, for whatever reason, the body cannot gasp.

This means there may be nothing wrong with a baby’s breathing under normal conditions, but if the baby goes into hypoxia from a blocked airway or because the baby sleeps on its tummy and does not receive sufficient oxygen, the child needs the sodium-driven pacemakers in order to gasp, which wakes the baby and initiates movement or crying.

"Gasping is an important arousal or auto-resuscitation mechanism," Ramirez said. It resets a baby’s normal breathing rhythm and also alerts the baby as well as the mother that something is wrong.

"During normal breathing, it’s a complicated network. However, the network becomes more vulnerable to situations like hypoxia, because under these conditions, respiration relies on only one group of pacemakers that become the critical drivers of [breathing] rhythm," Ramirez said.

Disturbed serotonin levels are also implicated in many psychiatric conditions, such as depression, bipolar disorder and attention deficit disorder. According to Ramirez, adults suffering with these types of conditions may be survivors of SIDS.

Ramirez and his colleagues now are looking more closely at the effects of different levels of serotonin, as well as the hormone norepinephrine, and exactly how much of each is necessary to keep auto-resuscitation in tact.

Catherine Gianaro | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>