Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adaptation to oxygen deprivation elucidates tumor physiology

08.03.2006


Two new studies in the March Cell Metabolism reveal a survival mechanism by which cells adapt to oxygen starvation by ratcheting down their demand. The mechanism serves to protect against the potentially fatal production of free radicals when oxygen is scarce, one group reported. The findings may also have important implications for understanding the physiology of cancerous tumors, the researchers said, suggesting new combination treatment strategies for fighting the disease.



When the supply of oxygen from the bloodstream fails to meet demand from body tissues--as can occur in the exercising muscle, ischemic hearts, or tumors--hypoxia results, the researchers explained. Cells adapt to low oxygen conditions by activating a "program of gene-expression changes" initiated by so-called hypoxia-inducible factor-1 (HIF-1) transcription factor.

"Over a century ago, Pasteur described that hypoxic cells increase the conversion of glucose [the body’s primary energy source] to lactate, an effect that to date had been primarily attributed to the activities of hypoxia-inducible transcription factors," said study author Chi Dang, from Johns Hopkins University School of Medicine. "The accompanying decrease in cellular respiration in hypoxia was thought to result passively from the paucity of the required oxygen."


The new studies rather reveal that adaptation to hypoxia depends on an active process that serves to inhibit respiration and shunt pyruvate, the lactate precursor, away from mitochondria. Mitochondria are the cells’ "power plants," where food-derived molecules are converted to usable energy via respiration.

"It is a very elegant mechanism," said study author Nicholas Denko of Stanford University School of Medicine. "The cell simply turns off the spigot that sends fuel to the mitochondria."

Both studies found that cells repress mitochondria function and oxygen consumption under low oxygen conditions through the enzyme pyruvate dehydrogenase kinase 1 (PDK1).

Dang’s group showed that, under hypoxic conditions, mouse cells lacking HIF-1 fail to activate PDK1 and undergo cell death (apoptosis) following a dramatic rise in the level of reactive oxygen species (ROS). Forced PDK1 expression in hypoxic cells lacking HIF-1 limited toxic free radical generation and rescued the cells from hypoxia-induced death.

Denko’s team similarly demonstrated in tumor cells that HIF-1 causes a drop in oxygen use, resulting in increased oxygen availability and decreased cell death under low oxygen conditions--findings that might have important implications for cancer therapy, he said.

Indeed, his group found HIF-1 activity made cells more resistant to the antitumor drug tirapazamine (TPZ). They also found that HIF-1-deficient cells grown with limited oxygen exhibit increased sensitivity to TPZ relative to normal cells.

"Recent interest has focused on cytotoxins that target hypoxic cells in tumor microenvironments, such as the drug tirapazamine," said Howard Hughes Medical Institute investigator M. Celeste Simon in a preview. "Because intracellular oxygen concentrations are decreased by mitochondrial oxygen consumption, HIF-1 could protect tumor cells from TPZ-mediated cell death by maintaining intracellular oxygen levels."

While HIF-1 inhibition in hypoxic tumor cells should have multiple therapeutic benefits, Simon added, "the use of HIF-1 inhibitors in conjunction with other treatments has to be carefully evaluated for the most effective combination and sequence of drug delivery."

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>