Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study confirms the ecological virtues of organic farming

08.03.2006


Organic farming has long been touted as an environmentally friendly alternative to conventional agriculture. A new study in the Proceedings of the National Academy of Sciences (PNAS) provides strong evidence to support that claim.




Writing in the March 6 online edition of PNAS, Stanford University graduate student Sasha B. Kramer and her colleagues found that fertilizing apple trees with synthetic chemicals produced more adverse environmental effects than feeding them with organic manure or alfalfa.

"The intensification of agricultural production over the past 60 years and the subsequent increase in global nitrogen inputs have resulted in substantial nitrogen pollution and ecological damage," Kramer and her colleagues write. "The primary source of nitrogen pollution comes from nitrogen-based agricultural fertilizers, whose use is forecasted to double or almost triple by 2050."


Nitrogen compounds from fertilizer can enter the atmosphere and contribute to global warming, adds Harold A. Mooney, the Paul S. Achilles Professor of Environmental Biology at Stanford and co-author of the study.

"Nitrogen compounds also enter our watersheds and have effects quite distant from the fields in which they are applied, as for example in contaminating water tables and causing biological dead zones at the mouths of major rivers," he says. "This study shows that the use of organic versus chemical fertilizers can play a role in reducing these adverse effects."

Nitrogen treatments

The PNAS study was conducted in an established apple orchard on a 4-acre site in the Yakima Valley of central Washington, one of the premiere apple-growing regions in the United States. Some trees used in the experiment had been raised with conventional synthetic fertilizers. Others were grown organically without pesticides, herbicides or artificial fertilization. A third group was raised by a method called integrated farming, which combines organic and conventional agricultural techniques.

"Conventional agriculture has made tremendous improvements in crop yield but at large costs to the environment," the authors write. "In response to environmental concerns, organic agriculture has become an increasingly popular option."

During the yearlong experiment, organically grown trees were fed either composted chicken manure or alfalfa meal, while conventionally raised plants were given calcium nitrate, a synthetic fertilizer widely used by commercial apple growers. Trees raised using the integrated system were given a blend of equal parts chicken manure and calcium nitrate.

Each tree was fertilized twice, in October and May, and given the same amount of nitrogen at both feedings no matter what the source--alfalfa, chicken manure, calcium nitrate or the manure/calcium nitrate blend.

Groundwater contamination

One goal of the PNAS experiment was to compare how much excess nitrogen leached into the soil using the four fertilizer treatments--one conventional, two organic (manure and alfalfa) and one integrated. When applied to the soil, nitrogen fertilizers release or break down into nitrates--chemical compounds that plants need to build proteins. However, excess nitrates can percolate through the soil and contaminate surface and groundwater supplies.

Besides having detrimental impacts on aquatic life, high nitrate levels in drinking water can cause serious illness in humans, particularly small children. According to the PNAS study, nearly one of 10 domestic wells in the United States sampled between 1993 and 2000 had nitrate concentrations that exceeded the EPA’s drinking water standards.

To measure nitrate levels during the experiment, water was collected in resin bags buried about 40 inches below the trees and then analyzed in the laboratory. The results were dramatic. "We measured nitrate leaching over an entire year and found that it was 4.4 to 5.6 times higher in the conventional treatment than in the two organic treatments, with the integrated treatment in between," says John B. Reganold, Regents Professor of Soil Science at Washington State University and co-author of the study.

Nitrogen gas emissions

The research team also compared the amount of nitrogen gas that was released into the atmosphere by the four treatments. Air samples collected in the orchard after the fall and spring fertilizations revealed that organic and integrated soils emitted larger quantities of an environmentally benign gas called dinitrogen (N2), than soils treated with conventional synthetic fertilizer. One explanation for this disparity is that the organic and integrated soils contained active concentrations of denitrifying bacteria--naturally occurring microbes that convert excess nitrates in the soil into N2 gas. However, denitrifier microbial communities were much smaller and far less active and efficient in conventionally treated soils.

The research team also measured emissions of nitrous oxide (N2O)--a potent greenhouse gas that’s 300 times more effective at heating the atmosphere than carbon dioxide gas, the leading cause of global warming. The results showed that nitrous oxide emissions were similar among the four treatments.

"We found that higher gas emissions from organic and integrated soils do not result in increased production of harmful nitrous oxide but rather enhanced emission of non-detrimental dinitrogen (N2)," Reganold says. "These results demonstrate that organic and integrated fertilization practices support more active and efficient denitrifier microbial communities, which may shift some of the potential nitrate leaching losses in the soil into harmless dinitrogen gas losses in the atmosphere."

Sustainable agriculture

Washington State produces more than half of the nation’s apples. In 2004, the state crop was worth about $963 million, with organically grown apples representing between 5 and 10 percent of the total value. But the results of the PNAS study may apply to other high-valued crops as well, according to the authors.

"This study is an important contribution to the debate surrounding the sustainability of organic agriculture, one of the most contentious topics in agricultural science worldwide," Reganold says. "Our findings not only score another beneficial point for organic agriculture but give credibility to the middle-ground approach of integrated farming, which uses both organic and conventional nitrogen fertilizers and other practices. It is this middle-ground approach that we may see more farmers adopting than even the rapidly growing organic approach."

Adds Mooney, "Organic farming cannot provide for all of our food needs, but it is certainly one important tool for use in our striving for sustainable agricultural systems. We need to explore and utilize all possible agricultural management techniques and technologies to reduce the very large global footprint of the needs to feed a population of over six billion people."

Other co-authors of the PNAS study are agroecologist Jerry D. Glover of The Land Institute in Salina, Ks., and Brendan J. M. Bohannan, associate professor of biological sciences at Stanford.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>