Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic discovery explains 74 percent cases of age-related macular degeneration

07.03.2006


Significant advance for understanding leading cause of blindness in elderly



A new study, led by researchers at Columbia University Medical Center, pinpoints the role that two genes – Factor H and Factor B – play in the development of nearly three out of four cases of age-related macular degeneration (AMD), a devastating eye disease that affects more than 10 million people in the United States.

Findings indicate that 74 percent of AMD patients carry certain variants in one or both genes that significantly increase their risk of this disease.


Published in Nature Genetics, the research is a continuation of work published last year by the same team in the Proceedings of the National Academy of Sciences (PNAS, April 30, 2005 issue, see Columbia press release: http://www.cumc.columbia.edu/news/press_releases/AMD-Allikmets.html). Led by Rando Allikmets, Ph.D., the Acquavella Associate Professor in Ophthalmology, Pathology and Cell Biology at Columbia University Medical Center, the research team included collaborating groups headed respectively by Gregory Hageman, Ph.D., professor of ophthalmology and visual sciences at the University of Iowa Roy J. and Lucille A. Carver College of Medicine, and by Michael Dean, Ph.D., at the National Cancer Institute of the National Institutes of Health.

The PNAS study showed that several variants in the Factor H gene significantly increase the risk of developing AMD. Factor H encodes a protein that helps shut down an immune response against bacterial or viral infection, once the infection is eliminated. People with these inherited risk-increasing variations of Factor H are less able to control inflammation caused by infectious triggers, which may spark AMD later in life.

Though the effect of Factor H on AMD is large, variation in this gene alone does not fully explain who gets AMD and who doesn’t. As described in the PNAS paper, about one-third (29 percent) of people with a Factor H risk variant had not been diagnosed with AMD.

The investigators decided to look for additional culprits and focused on genes in the same immune response pathway that contains Factor H.

Their genetic analysis of 1,300 people quickly identified Factor B as the major modifier of the disease. The discovery makes good biological sense: while Factor H is an inhibitor of the immune response to infection, Factor B is an activator. Because of the complementary roles of the these two genes, a protective Factor B variation can protect against AMD, even if one carries a risk-increasing variant of Factor H, and vice versa.

As described in Nature Genetics, the two genes explained nearly three out of four AMD cases: 74 percent of the subjects with AMD had either the Factor H or Factor B risk variant (or both), but no protective variants of either gene.

"I am not aware of any other complex disorder where nearly 75 percent of genetic causality has been identified," said Dr. Rando Allikmets, who is senior author of the paper.

"These findings are significant because they absolutely confirm the roles of these two genes and, consequently, the central role of a specific immune response pathway, in the development of AMD. We confirmed this association not just statistically and genetically but, most importantly, pinpointed the biological origin of the disease," added Dr. Allikmets. "In just a few short years, we’ve gone from knowing very little about what causes AMD to knowing quite a lot. We now have clear targets for early therapeutic intervention."

Though the new paper explains much of the genetic risk, the specific triggers that set off the immune response and subsequent inflammation are still unknown. Researchers at Columbia University Medical Center and the University of Iowa are now searching for specific viral and bacterial culprits.

"It is my sincere pleasure to work with this talented team and to be involved in these important studies that identify the genetic basis for the role of the complement system – a pathway that my colleagues and I identified a number of years ago – in this truly devastating disease," said Dr. Hageman.

More than 50 million people worldwide are estimated to have irreversible blindness as a result of macular degeneration, making it the most common cause of blindness for those over 60. It’s estimated that 30 percent of the population will have some form of AMD by the time they reach the age of seventy-five. The disease is marked by a progressive loss of central vision due to degeneration of the macula--a region of the retina and the area responsible for fine, central vision.

Elizabeth Streich | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>