Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic discovery explains 74 percent cases of age-related macular degeneration

07.03.2006


Significant advance for understanding leading cause of blindness in elderly



A new study, led by researchers at Columbia University Medical Center, pinpoints the role that two genes – Factor H and Factor B – play in the development of nearly three out of four cases of age-related macular degeneration (AMD), a devastating eye disease that affects more than 10 million people in the United States.

Findings indicate that 74 percent of AMD patients carry certain variants in one or both genes that significantly increase their risk of this disease.


Published in Nature Genetics, the research is a continuation of work published last year by the same team in the Proceedings of the National Academy of Sciences (PNAS, April 30, 2005 issue, see Columbia press release: http://www.cumc.columbia.edu/news/press_releases/AMD-Allikmets.html). Led by Rando Allikmets, Ph.D., the Acquavella Associate Professor in Ophthalmology, Pathology and Cell Biology at Columbia University Medical Center, the research team included collaborating groups headed respectively by Gregory Hageman, Ph.D., professor of ophthalmology and visual sciences at the University of Iowa Roy J. and Lucille A. Carver College of Medicine, and by Michael Dean, Ph.D., at the National Cancer Institute of the National Institutes of Health.

The PNAS study showed that several variants in the Factor H gene significantly increase the risk of developing AMD. Factor H encodes a protein that helps shut down an immune response against bacterial or viral infection, once the infection is eliminated. People with these inherited risk-increasing variations of Factor H are less able to control inflammation caused by infectious triggers, which may spark AMD later in life.

Though the effect of Factor H on AMD is large, variation in this gene alone does not fully explain who gets AMD and who doesn’t. As described in the PNAS paper, about one-third (29 percent) of people with a Factor H risk variant had not been diagnosed with AMD.

The investigators decided to look for additional culprits and focused on genes in the same immune response pathway that contains Factor H.

Their genetic analysis of 1,300 people quickly identified Factor B as the major modifier of the disease. The discovery makes good biological sense: while Factor H is an inhibitor of the immune response to infection, Factor B is an activator. Because of the complementary roles of the these two genes, a protective Factor B variation can protect against AMD, even if one carries a risk-increasing variant of Factor H, and vice versa.

As described in Nature Genetics, the two genes explained nearly three out of four AMD cases: 74 percent of the subjects with AMD had either the Factor H or Factor B risk variant (or both), but no protective variants of either gene.

"I am not aware of any other complex disorder where nearly 75 percent of genetic causality has been identified," said Dr. Rando Allikmets, who is senior author of the paper.

"These findings are significant because they absolutely confirm the roles of these two genes and, consequently, the central role of a specific immune response pathway, in the development of AMD. We confirmed this association not just statistically and genetically but, most importantly, pinpointed the biological origin of the disease," added Dr. Allikmets. "In just a few short years, we’ve gone from knowing very little about what causes AMD to knowing quite a lot. We now have clear targets for early therapeutic intervention."

Though the new paper explains much of the genetic risk, the specific triggers that set off the immune response and subsequent inflammation are still unknown. Researchers at Columbia University Medical Center and the University of Iowa are now searching for specific viral and bacterial culprits.

"It is my sincere pleasure to work with this talented team and to be involved in these important studies that identify the genetic basis for the role of the complement system – a pathway that my colleagues and I identified a number of years ago – in this truly devastating disease," said Dr. Hageman.

More than 50 million people worldwide are estimated to have irreversible blindness as a result of macular degeneration, making it the most common cause of blindness for those over 60. It’s estimated that 30 percent of the population will have some form of AMD by the time they reach the age of seventy-five. The disease is marked by a progressive loss of central vision due to degeneration of the macula--a region of the retina and the area responsible for fine, central vision.

Elizabeth Streich | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>