Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amber reveals ecology of 30 million year old spiders

01.03.2006


Scientists at The University of Manchester and the Manchester Metropolitan University have carried out the first comparative scientific study of ancient spiders trapped in amber more than 30 millions years ago.

The study of fossilised spiders from the Baltic (Poland) and the Dominican (Caribbean) regions has revealed new insights into the ecologies of spiders dating back to the Cenozoic period.

It is the first time ancient spiders from different parts of the world have been compared on such a large scale. 671 species of spiders were compared in the study which is published in the March issue of the Royal Society’s Journal Biology Letters.



Palaeoarachnologist Dr David Penney, of The University of Manchester’s School of Earth, Atmospheric and Environmental Sciences who led the research, said: “Amber provides a unique window into past forest ecosystems. It retains an incredible amount of information, not just about the spiders themselves, but also about the environment in which they lived.

“We have not only been able to compare the size distributions of over 600 spiders but we have also been able to gain unique insights into the forest in which they lived.”

By analysing the size distributions of the spiders and comparing the distinct hunting traits of each species, Dr Penney found that web-spinning spiders were bigger in Baltic amber than in Dominican amber, but that there was no difference between hunting spiders in either region. It was also found the fauna of the amber producing trees in each region accounted for this difference in size.

“Several lines of evidence show that greater structural complexity of Baltic compared to Dominican amber trees explains the presence of larger web-spinners. The Dominican trees are long, thin and smooth whereas the Baltic trees are wide and bushy, providing a much better environment for web-spinners to prosper,” says Dr Penney.

The study demonstrates for the first time that spiders trapped in amber can be scientifically compared across deep time (30 million years). This is due to the fact that until now it was unknown whether the amber resins were trapping organisms uniformly. This study proves they were.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>