Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-tech garment holds promise in preventing maternal death related to childbirth

28.02.2006


A simple, low-tech garment has the potential to prevent a major cause of death among women who give birth in many Third World countries, according to a new study by maternal health researchers.



Study findings show the use of a neoprene suit can save the lives of women suffering from obstetrical hemorrhaging due to childbirth. Hemorrhaging accounts for about 30 percent of the more than 500,000 maternal deaths worldwide each year due to childbirth, nearly all in poor countries, according to the researchers.

Results from a pilot study on the use of the suit, conducted at selected sites in Egypt, appear in today’s online edition of the British Journal of Obstetrics and Gynecology. The findings will be published in the April issue of the journal.


Suellen Miller, CNM, PhD, who is an international maternal health expert and director of the Safe Motherhood Programs of the UCSF Women’s Global Health Imperative, directed the pilot study, which evaluated use of a non-pneumatic anti-shock garment, or NASG.

The NASG is a simple, lightweight reusable neoprene suit – similar to the bottom half of a wetsuit. It is made up of five segments that close tightly with Velcro. Crucial compression is achieved by combining the three-way stretch of the neoprene and the tight Velcro closures.

When in shock, the brain, heart and lungs are deprived of oxygen because blood accumulates in the lower abdomen and legs. The compression from the NASG shunts blood from the lower extremities and abdominal area to the essential core organs: heart, lungs and brain. Within minutes of application, a hemorrhaging woman can regain consciousness and vital signs will normalize, according to Miller.

In the pilot study, 158 obstetrical hemorrhage patients underwent standard hemorrhage treatment and 206 patients with obstetrical hemorrhaging underwent standard treatment plus the NASG.

Study results showed a 50 percent decrease in blood loss among women treated with the NASG, which is statistically significant, according to Miller. Findings showed a 69 percent decrease in death and severe illness.

"These results are dramatic, particularly given that the NASG can be easily applied by anyone. No medical training is necessary," said Miller.

In developing countries, the majority of women give birth at home with poorly trained or untrained attendants, Miller explained. This suit is intended to keep a woman alive for several hours until she can be transported to a hospital where she can receive blood products and definitive treatment, such as surgery, in an effort to save her life.

"In our research, women who appeared clinically dead, with no blood pressure and no palpable pulse, were resuscitated and kept alive for up to two days while waiting for blood transfusions," said Miller.

In the United States, the suit had been used most recently by emergency medical technicians during transport of patients with lower body trauma to help prevent severe obstetrical hemorrhage by reversing shock and decreasing bleeding.

"Even though there have been variations of this suit used in the past, we see this as being somewhat revolutionary," said Miller. "We have demonstrated its efficacy in a limited way with the Egypt pilot study and will continue now with larger, more rigorous studies."

Nancy Chan | EurekAlert!
Further information:
http://www.blackwell-synergy.com/loi/bjo?open=2006

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>