Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal models show that anabolic steroids flip the adolescent brain’s switch for aggression

27.02.2006


Hamsters with ’roid rage’ reveal that human teens may stay nasty for more than two years, with possible long-term brain impact



Anabolic steroids not only make teens more aggressive, but may keep them that way into young adulthood. The effect ultimately wears off but there may be other, lasting consequences for the developing brain. These findings, published in February’s Behavioral Neuroscience, also showed that aggression rose and fell in synch with neurotransmitter levels in the brain’s aggression control region. Behavioral Neuroscience is published by the American Psychological Association (APA).

Neuroscientists are deeply concerned about rising adolescent abuse of anabolic-androgenic steroids (AASs), given the National Institute on Drug Abuse’s estimate that nearly half a million eighth- and 10th-grade students abuse AASs each year. Not only do steroids set kids up for heavier use of steroids and other drugs later in life, but long-term users can suffer from mood swings, hallucinations and paranoia; liver damage; high blood pressure; as well as increased risk of heart disease, stroke and some types of cancer. Withdrawal often brings depression, and recent research suggests that some AASs may even be habit-forming.


Overseen by Richard Melloni Jr., PhD, of Northeastern University in Boston, the current study of 76 adolescent hamsters compared how individual hamsters behaved when another hamster was put into their cages. Normally mild-mannered hamsters still defend their turf, learning aggression during puberty by play-fighting, much like humans. Their roughhousing normally includes wrestling and nibbling – pretty tame stuff.

However, hamsters injected with commonly used steroids (suspended in oil) became extremely aggressive. Even after the drug was withdrawn, the newly vicious hamsters attacked, bit and chased the intruders. In fact, their aggressiveness measured ten times greater than that of control hamsters injected with oil only. Their full-blown aggression – clearly drug-induced -- lasted for nearly two weeks of withdrawal, the equivalent of half their adolescence. Eventually, the aggressiveness subsided; by three weeks of withdrawal, all the hamsters greeted intruders with normal, playful defensiveness.

Autopsy revealed that the outward aggressiveness correlated with inner changes in the brain. When the drugged hamsters were hostile hosts, a part of their brains called the anterior hypothalamus pumped out more of a neurotransmitter called vasopressin. By three weeks of withdrawal, vasopressin levels subsided in parallel with the aggressive behavior. The anterior hypothalamus regulates aggression and social behavior. Thus, vasopressin – already known to stimulate that area – appears to fuel the engine of aggression. And, says Melloni, "Steroids step on the gas for agression."

Thus, the neuroscientists conclude that the aggressiveness triggered by anabolic steroids, although reversible, may last long enough to create serious behavioral problems for adults. Because this part of the rodent and human nervous systems are similar, researchers generalize their findings to humans. As a result, Melloni and his colleagues speculate that anabolic steroids can dramatically shorten teenage fuses (not known for length under the best of circumstances) and make young people "pop off" for years, a danger to themselves and to others. Melloni and others researchers also are concerned that drug use during a critical window in brain development can change their wiring for good. He says, "Because the developing brain is more adaptable and pliable, steroids could change the trajectory if administered during development." His lab is releasing other new findings, as yet unpublished, that the serotonin system – implicated in depression – may never recover.

"If you hit the right areas of the brain at the right time, you make permanent changes," Melloni concludes from the converging evidence.

He hopes that adolescents don’t take the ultimate recovery of the vasopressin system to mean it’s OK to use the drugs. "It’s our hope that people considering the use of these drugs weigh the long-term health risks and the serious potential for aggression and violence. Muscle mass and medals aren’t worth the risk of hurting someone or landing in jail."

Finally, researchers such as Melloni hope these new insights can lead to treatments for aggressive behavior, with or without steroid abuse. "Linking aggression to fluctuations in vasopressin makes it an important neurotransmitter to target for pharmacotherapy," he says.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>