Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Largest study of human ’interactome’ reveals a novel way


Analysis of protein interactions dispels old notions of what’s important about them

Discoveries made during the first large-scale analysis of interactions between proteins in our cells hold promise for identifying new genes involved in genetic diseases, according to researchers at Johns Hopkins and the Institute of Bioinformatics (IOB) in Bangalore.

The findings, reported in the March issue of Nature Genetics, were made using a database of more than 25,000 protein-protein interactions compiled by the Hopkins-IOB team. The result is believed to be the most detailed human "interactome" yet describing the interplay of proteins that occur in cells during health and disease.

"Genes are important because they are the blueprints for proteins, but proteins are where the action is in human life and health," says Akhilesh Pandey, M.D., Ph.D., an assistant professor at the Institute of Genetic Medicine and the departments of Biological Chemistry, Oncology and Pathology at The Johns Hopkins University School of Medicine. "This ability to find links between sets of proteins involved in different genetic disorders offers a novel approach for more rapidly identifying new candidate genes involved in human diseases," he says.

The analysis included interactions among 1,077 genes coding for proteins linked to 3,133 diseases, the researchers report. Significantly, it showed that proteins encoded by genes that are mutated in inherited disorders were likely to interact with proteins already known to cause similar disorders. In addition, the researchers disproved the long-held belief among scientists that the relative importance of a specific protein is always reflected by the number of other proteins it interacts with in the cell.

According to Pandey, the team’s comparison of almost 25,000 human, 16,000 yeast, 5,500 worm, and 25,000 fly protein-protein interactions showed that, among these more than 70,000 links, only 16 were common to all four species.

Researchers say this low level of interactome overlap among species was surprising. It showed that current rapid-testing methods for identifying protein interactions are likely to miss true interactions.

Much of the Hopkins-Bangalore work was based on information compiled in the Human Protein Reference Database (HPRD), a repository of information on protein-protein interactions collected from the published literature and stored in a format suitable for rapid study and comparison with other animal cells. HPRD was developed by the IOB and the Pandey laboratory.

"Using HPRD and several other databases, we have been able to develop a gold mine of new information for researchers seeking new ways of finding candidate genes involved in genetic diseases," Pandey says. "And our demonstration that a protein’s importance is not based on the number of interactions it has with other proteins is an important conceptual breakthrough. It eliminates a blind alley that could mislead researchers investigating the roles of specific proteins in the cell."

Pandey is the chief scientific advisor to the IOB and senior author of the Nature Genetics article. The team’s conceptual advance was made by comparing human data with 6,014 genes in yeast and 2,284 genes in mice whose effect on survival was known, according to Pandey. "Our much larger database on genes and proteins gave us the information to set the record straight on how to measure a protein’s importance," he says.

Using this kind of comprehensive comparison of information about human and other organisms allowed Pandey’s group to identify 36 previously unknown protein-protein interactions, nine of which were tested in the laboratory to verify what the analysis suggested. "We proved they were valid," Pandey says. "By linking computerized sleuthing to laboratory experiments to confirm those findings, we expect to be able to eventually fill in many blanks in human protein-protein interactions."

All the analyses were primarily carried out at the IOB, a nonprofit research institute founded by Pandey in May 2002. The Human Protein Reference Database was developed with funding from the National Institutes of Health and the Institute of Bioinformatics. Pandey serves as chief scientific advisor to the Institute of Bioinformatics. He is entitled to a share of licensing fees paid to The Johns Hopkins University by commercial entities for use of the database. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

David March | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>