Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest study of human ’interactome’ reveals a novel way

27.02.2006


Analysis of protein interactions dispels old notions of what’s important about them



Discoveries made during the first large-scale analysis of interactions between proteins in our cells hold promise for identifying new genes involved in genetic diseases, according to researchers at Johns Hopkins and the Institute of Bioinformatics (IOB) in Bangalore.

The findings, reported in the March issue of Nature Genetics, were made using a database of more than 25,000 protein-protein interactions compiled by the Hopkins-IOB team. The result is believed to be the most detailed human "interactome" yet describing the interplay of proteins that occur in cells during health and disease.


"Genes are important because they are the blueprints for proteins, but proteins are where the action is in human life and health," says Akhilesh Pandey, M.D., Ph.D., an assistant professor at the Institute of Genetic Medicine and the departments of Biological Chemistry, Oncology and Pathology at The Johns Hopkins University School of Medicine. "This ability to find links between sets of proteins involved in different genetic disorders offers a novel approach for more rapidly identifying new candidate genes involved in human diseases," he says.

The analysis included interactions among 1,077 genes coding for proteins linked to 3,133 diseases, the researchers report. Significantly, it showed that proteins encoded by genes that are mutated in inherited disorders were likely to interact with proteins already known to cause similar disorders. In addition, the researchers disproved the long-held belief among scientists that the relative importance of a specific protein is always reflected by the number of other proteins it interacts with in the cell.

According to Pandey, the team’s comparison of almost 25,000 human, 16,000 yeast, 5,500 worm, and 25,000 fly protein-protein interactions showed that, among these more than 70,000 links, only 16 were common to all four species.

Researchers say this low level of interactome overlap among species was surprising. It showed that current rapid-testing methods for identifying protein interactions are likely to miss true interactions.

Much of the Hopkins-Bangalore work was based on information compiled in the Human Protein Reference Database (HPRD), a repository of information on protein-protein interactions collected from the published literature and stored in a format suitable for rapid study and comparison with other animal cells. HPRD was developed by the IOB and the Pandey laboratory.

"Using HPRD and several other databases, we have been able to develop a gold mine of new information for researchers seeking new ways of finding candidate genes involved in genetic diseases," Pandey says. "And our demonstration that a protein’s importance is not based on the number of interactions it has with other proteins is an important conceptual breakthrough. It eliminates a blind alley that could mislead researchers investigating the roles of specific proteins in the cell."

Pandey is the chief scientific advisor to the IOB and senior author of the Nature Genetics article. The team’s conceptual advance was made by comparing human data with 6,014 genes in yeast and 2,284 genes in mice whose effect on survival was known, according to Pandey. "Our much larger database on genes and proteins gave us the information to set the record straight on how to measure a protein’s importance," he says.

Using this kind of comprehensive comparison of information about human and other organisms allowed Pandey’s group to identify 36 previously unknown protein-protein interactions, nine of which were tested in the laboratory to verify what the analysis suggested. "We proved they were valid," Pandey says. "By linking computerized sleuthing to laboratory experiments to confirm those findings, we expect to be able to eventually fill in many blanks in human protein-protein interactions."

All the analyses were primarily carried out at the IOB, a nonprofit research institute founded by Pandey in May 2002. The Human Protein Reference Database was developed with funding from the National Institutes of Health and the Institute of Bioinformatics. Pandey serves as chief scientific advisor to the Institute of Bioinformatics. He is entitled to a share of licensing fees paid to The Johns Hopkins University by commercial entities for use of the database. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

David March | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hprd.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>