Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Largest study of human ’interactome’ reveals a novel way

27.02.2006


Analysis of protein interactions dispels old notions of what’s important about them



Discoveries made during the first large-scale analysis of interactions between proteins in our cells hold promise for identifying new genes involved in genetic diseases, according to researchers at Johns Hopkins and the Institute of Bioinformatics (IOB) in Bangalore.

The findings, reported in the March issue of Nature Genetics, were made using a database of more than 25,000 protein-protein interactions compiled by the Hopkins-IOB team. The result is believed to be the most detailed human "interactome" yet describing the interplay of proteins that occur in cells during health and disease.


"Genes are important because they are the blueprints for proteins, but proteins are where the action is in human life and health," says Akhilesh Pandey, M.D., Ph.D., an assistant professor at the Institute of Genetic Medicine and the departments of Biological Chemistry, Oncology and Pathology at The Johns Hopkins University School of Medicine. "This ability to find links between sets of proteins involved in different genetic disorders offers a novel approach for more rapidly identifying new candidate genes involved in human diseases," he says.

The analysis included interactions among 1,077 genes coding for proteins linked to 3,133 diseases, the researchers report. Significantly, it showed that proteins encoded by genes that are mutated in inherited disorders were likely to interact with proteins already known to cause similar disorders. In addition, the researchers disproved the long-held belief among scientists that the relative importance of a specific protein is always reflected by the number of other proteins it interacts with in the cell.

According to Pandey, the team’s comparison of almost 25,000 human, 16,000 yeast, 5,500 worm, and 25,000 fly protein-protein interactions showed that, among these more than 70,000 links, only 16 were common to all four species.

Researchers say this low level of interactome overlap among species was surprising. It showed that current rapid-testing methods for identifying protein interactions are likely to miss true interactions.

Much of the Hopkins-Bangalore work was based on information compiled in the Human Protein Reference Database (HPRD), a repository of information on protein-protein interactions collected from the published literature and stored in a format suitable for rapid study and comparison with other animal cells. HPRD was developed by the IOB and the Pandey laboratory.

"Using HPRD and several other databases, we have been able to develop a gold mine of new information for researchers seeking new ways of finding candidate genes involved in genetic diseases," Pandey says. "And our demonstration that a protein’s importance is not based on the number of interactions it has with other proteins is an important conceptual breakthrough. It eliminates a blind alley that could mislead researchers investigating the roles of specific proteins in the cell."

Pandey is the chief scientific advisor to the IOB and senior author of the Nature Genetics article. The team’s conceptual advance was made by comparing human data with 6,014 genes in yeast and 2,284 genes in mice whose effect on survival was known, according to Pandey. "Our much larger database on genes and proteins gave us the information to set the record straight on how to measure a protein’s importance," he says.

Using this kind of comprehensive comparison of information about human and other organisms allowed Pandey’s group to identify 36 previously unknown protein-protein interactions, nine of which were tested in the laboratory to verify what the analysis suggested. "We proved they were valid," Pandey says. "By linking computerized sleuthing to laboratory experiments to confirm those findings, we expect to be able to eventually fill in many blanks in human protein-protein interactions."

All the analyses were primarily carried out at the IOB, a nonprofit research institute founded by Pandey in May 2002. The Human Protein Reference Database was developed with funding from the National Institutes of Health and the Institute of Bioinformatics. Pandey serves as chief scientific advisor to the Institute of Bioinformatics. He is entitled to a share of licensing fees paid to The Johns Hopkins University by commercial entities for use of the database. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

David March | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hprd.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>