Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When seeing is misleading: Clutter leads to high-confidence errors

24.02.2006


Did you ever arrange to meet a friend at a busy street corner, then rush up to a total stranger thinking it was your friend? Neuroscientists have a theory to explain why such potentially embarrassing mistakes occur. They probe the underlying perceptual and neural processes of visual search by studying how distracters affect performance of a visual search task. One might intuitively expect that as background noise created by distracters and errors increase, confidence in one’s decision plummets. But in a new study published in PLoS Biology, Stefano Baldassi, Nicola Megna, and David Burr show that just the opposite happens. When they asked observers to search for a tilted target embedded in vertical distracters and estimate the target’s tilt, the observers often overestimated the magnitude of the tilt--and did so with a high degree of confidence in their decision.



The authors used signal detection theory to make quantitative predictions about the probability that an observer will detect a target under cluttered conditions. SDT assumes the brain represents each element in a visual search display as an independent variable with its own noise. It also assumes that when the observer isn’t sure which stimulus is the target, she monitors all stimuli, and performance suffers. Thus, increasing the number of distracters (trying to find your friend on a busy street or a document on a messy desk) increases the background noise of the visual system’s representation while reducing the accuracy and reaction time of performing the task.

It turns out that SDT lends a logical prediction to the seemingly counterintuitive finding that observers make more high-confidence errors when confronted with clutter. The prediction flows from a "squeaky wheel gets the grease" rule about visual processing, called the "Sign Max Rule." In other words, since each stimulus generates a noisy internal representation, and subjects monitor all the distracters to search for the target, as the number of distracters increases, the chance of perceiving a distracter as being more tilted than the target increases, and confidence increases as well. This prediction bore out in the authors’ experiments, as determined both by the observers’ perceived magnitude and self-reports on their level of confidence about each decision. The authors conclude the visual system combines the outputs of noisy detectors and settles on the maximum signal.


These results suggest that the probability of being sure you saw something you didn’t increases in chaotic environments, and could have far-reaching implications. The authors explain that while their study focused on "simple perceptual decisions about a single stimulus attribute," the same type of processes may also apply to complex cognitive tasks involving problem solving and memory. If people find themselves confronted with multiple events in a chaotic, confusing environment, they may decide about some aspect of the situation and be totally wrong even though they have full confidence in their decision. The consequences of such a phenomenon could be relatively trivial, explaining why professional athletes often end up wasting their time arguing questionable calls with an official. Or they could prove a matter of life and death, perhaps accounting for why eyewitness testimony can be unreliable--or why soldiers sometimes can’t tell friend from foe in the heat of battle.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>