Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study shows antibody-interleukin complexes stimulate immune responses


Selective T cell stimulation could help improve treatment of autoimmune disease and cancer

The findings could also be significant for developing new ways to help patients with autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, or juvenile diabetes.

The study, which was published in the February 16 issue of the online journal Science Express, showed that these injections caused a massive selective increase in the immune system’s two main types of T cells.

"Our study shows that different cytokine-antibody complexes such as IL-2/IL-2 mAb could be clinically useful to selectively boost or inhibit the immune response in vivo," said Onur Boyman, a member of the Scripps Research Department of Immunology and lead author of the study.

The type of monoclonal antibody that was injected was specific to interleukin-2 (IL-2), a naturally occurring protein and a known immunotherapy for metastatic melanoma and renal cancer. The researchers showed that the anti-IL-2 monoclonal antibody (IL-2 mAb) expands the proliferation of specific T cells in vivo by increasing the biological activity of naturally occurring IL-2 through the formation of immune complexes. When combined with recombinant IL-2, some IL-2/IL-2 mAb complexes cause more than a 100-fold proliferation in CD8+ T cells, which can target virally infected cells or tumor cells.

Interleukin-2 increases the number of a subset of CD8+ T cells (referred to as antigen-experienced or memory T cells) in circulation and is often used for tumor immunotherapy and vaccination. However, IL-2 also stimulates CD4+ T regulatory cells, which can suppress those same memory T cells. Therefore, the prevailing view was that administration of IL-2 mAb removes the IL-2-dependent CD4+ T regulatory cells, which in turn leads to an expansion of CD8+ T cells.

"In the study, however, we noticed that the enhancing effect of IL-2 mAb correlated with naturally occurring levels of IL-2," Boyman said. "We concluded that, despite its reported neutralizing effect, IL-2 mAb actually expanded the proliferation of CD8+ T cells simply by increasing the biological activity of pre-existing IL-2 through the formation of antibody-cytokine immune complexes in vivo. We next combined recombinant IL-2 with IL-2 mAb, which led to an even more dramatic expansion. This expansion effect also extended to other types of antibody-cytokine complexes, such as IL-4/IL-4 mAb and IL-7/IL-7 mAb."

Despite these findings, Boyman noted, no one yet knows why these antibody-cytokine complexes are such potent immune response boosters in vivo.

"A few studies have suggested that injecting a cytokine together with the right antibody increases the half-life of the cytokine in vivo, accompanied by a very mild immune activation," he said. "But our study suggests a different mechanism and that joining a cytokine to its specific antibody opens the way for selective and vigorous stimulation of T cell subsets. With some types of antibodies, injecting IL-2/IL-2 mAb complexes might be clinically useful for tumor immunotherapy and for expanding T cell numbers after bone marrow transplantation. On the other hand, expansion of CD4+ T regulatory cells by IL-2 combined with another type of IL-2 mAb might provide a basis for treating autoimmune disease."

Keith McKeown | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>