Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great (taste) expectations: Study shows brain anticipates taste, shifts gears

23.02.2006


As the prism of our senses, the human brain has ways of refracting sensory input in defiance of reality.



This is seen, for example, in the placebo effect, when simple sugar pills or inert salves taken by unwitting subjects are seen to ease pain or have some other beneficial physiological effect. How the brain processes this faked input and prompts the body to respond is largely a mystery of neuroscience.

Now, however, scientists have begun to peel back some of the neurological secrets of this remarkable phenomenon and show how the brain can be rewired in anticipation of sensory input to respond in prescribed ways. Writing in the current issue (March 1, 2006) of the journal Brain, Behavior, and Immunity, a team of University of Wisconsin-Madison scientists reports the results of experiments that portray the brain in action as it is duped.


The new work, conducted by a team led by UW-Madison assistant professor of psychology and psychiatry Jack B. Nitschke, tested the ability of the human brain to mitigate foul taste through a ruse of anticipation. The work, conducted at the UW-Madison Waisman Center using state-of-the-art brain imaging techniques and distasteful concoctions of quinine on a cohort of college students, reveals in detail how the brain responds to a manipulation intended to mitigate an unpleasant experience.

"There is a potent impact to expectancy," says Nitschke, who, with his colleagues, exposed 43 undergraduate subjects to potions of quinine, sugar water or distilled water while undergoing magnetic resonance imaging (MRI).

The subjects, Nitschke explains, were asked beforehand to associate a prescribed set of cues with a taste. A "minus sign" flashed through fiber optic goggles to subjects undergoing MRI, for instance, was to be an anticipatory signal that a liquid subsequently dripped into the mouth would have a very bitter taste. A "zero "cue corresponded with a neutral taste, and a "plus sign" with a pleasant, sugary taste.

The cues, according to Nitschke, were flashed to subjects just prior to the administration of a few drops of liquid. But in the study, the cues would not always match the taste they were said to presage.

His group observed that when subjects were given a cue that suggested the taste they were about to experience would be less bitter, the taste was perceived as such, and the regions of the brain that code tastes were activated less.

"When the subject sees the warning signal, portions of the brain activated by the misleading cue predict the decreased brain response to the awful taste," Nitschke says. What’s more, "the (brain’s) response to the misleading cue will predict the subject’s perception of what the taste is going to be. The subject anticipates that the taste won’t be that bad, and indeed that’s what they report."

In short, the new study shows how expectancy affects how humans perceive sensory input, and how events in the brain are directly related to those perceptions.

Importantly, by mapping how the brain anticipates an event and kicks in a placebo effect, Nitschke argues, scientists can begin to think about ways that knowledge could be used in clinical settings.

For Nitschke, who also practices as a clinical psychologist specializing in the treatment of depression and anxiety disorders, the new detailed insights into the power of anticipation could lead to better treatments for such conditions.

"The placebo operates through expectancy. In this study, we’ve taken the pill out of the picture. We’re just manipulating expectancies," he says. "The results beg the question of what can we do to target anticipatory processes in our patients that might lead to better outcomes."

Jack B. Nitschke | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>