Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Levee modeling study to provide technical data for rebuilding New Orleans

22.02.2006


To provide essential data for the rebuilding of the ravaged levees in New Orleans, engineers from Rensselaer Polytechnic Institute will be studying small-scale models of sections of the flood-protection system. The researchers will replicate conditions during Hurricane Katrina by subjecting the models to flood loads, supplying important information to help the U.S. Army Corps of Engineers prepare the city for next hurricane season and beyond.



The researchers will build and test models of typical levee sections from several locations in New Orleans, including the 17th Street Canal and the London Avenue Canal.

As part of the Corps’ Hurricane Katrina Interagency Performance Evaluation Task Force (IPET), the project will take advantage of the facilities at Rensselaer’s Geotechnical Centrifuge Research Center, which is partially funded through the National Science Foundation (NSF). Two Rensselaer engineers will be leading the effort: Tarek Abdoun, principal investigator and associate professor of civil and environmental engineering; and Thomas Zimmie, professor and acting chair of civil and environmental engineering.


"In addition to studying the damaged structures in the aftermath of the hurricane, we also can model the conditions that were occurring during the storm," Abdoun says. "This will provide decision makers with the best scientific information available as they proceed with the rebuilding process."

Zimmie was a member of the NSF-funded team that investigated levee failures in the immediate wake of the storm. In the team’s preliminary report, researchers noted that there was not one simple answer as to why the levees failed. The field observations suggested a number of possible causes, according to Zimmie.

At the 17th Street Canal, the foundation is a complex combination of peat and weak clays, which may have caused this levee’s failure, Zimmie says. Likewise, at the London Avenue Canal, a section of fine sand under the levee might have been the culprit.

"Until all the physical evidence has been analyzed, we will not have a complete picture of what happened," Zimmie says. "The information we collect from these centrifuge models will provide some hard data to back up our preliminary observations, helping us to better understand how levees respond under extreme conditions."

Rensselaer’s 150 g-ton centrifuge, which is one of only four of its kind in the country, has a large mechanical arm that can swing model structures around at 250 miles per hour, exerting forces real structures would face only at catastrophic moments.

"Suppose we want to test a levee that is 100 feet high," Abdoun says. "We can build a model that is only one foot high and then spin it around at 100 g, making it equivalent to a 100-foot-high levee. We can simulate all kinds of structures under just about any failure condition -- earthquakes, explosions, landslides -- and we can do it relatively fast at a very reasonable cost."

A system of advanced sensors will measure the response of the levees in both the vertical and horizontal planes, and cameras will be mounted around the models for visual observations.

The research at Rensselaer will be supplemented by modeling studies at the Army’s Centrifuge Research Center in Vicksburg, Miss. The IPET final report, which is scheduled to be completed by June 1, will be validated by an external review panel from the American Society of Civil Engineers (ASCE). The National Academies has assembled a multidisciplinary, independent panel of acknowledged experts to review and synthesize the IPET and ASCE efforts. The National Academies panel will report its findings and recommendations directly to the Assistant Secretary of the Army for Civil Works in the summer of 2006.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>