Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large European study finds gene variant is no strong risk factor for osteoporosis

21.02.2006


Variations in a number of different genes and environmental factors affect an individual’s risk for osteoporosis. Several gene variants have been linked to osteoporosis, but few have stood the test of time. The GENOMOS study, a large European collaboration led by Andre Uitterlinden (Erasmus University Medical Center), John Ioannidis (University of Ioannina), and Stuart Ralston (University of Edinburgh), now shows that a top candidate gene plays a role in osteoporosis, but with effects that are less marked than those described in previous studies.



The so-called Sp1 polymorphism in the COL1A1 gene is a plausible candidate: the gene contains the genetic information to make type 1 collagen, a major component of bone, and preclinical studies suggested that one of the two variants (the T version) led to weaker bones. Earlier genetic studies had found an association between the T variant and low bone mineral density (BMD) and fractures, prompting some scientists to suggest that genetic testing of people for this variant could help in assessing fracture risk. The GENOMOS study was done to evaluate how good the COL1A1 genetic test was at predicting fractures and to determine if it was associated with osteoporosis.

Over 20,000 people took part in GENOMOS, and the number of fractures reported was five times greater than in all previous studies combined. The researchers conducted genetic testing for the COL1A1 variation in participants and measured bone mineral density in all of them. The link between the T variant and osteoporosis was less impressive than that found in many earlier studies. The Sp1 polymorphism in COL1A1 was associated with reduced BMD, but the effects were small and limited to people who carried two copies of the T variant. The investigators found an association between the T variant and spine (vertebral) fractures, but there was no association with non-spine fractures. Overall, the researchers estimate that the presence of the T allele would explain at most 10% of the risk of vertebral fractures for women.


From these results, it seems clear that genetic testing for the COLIA1 variant in isolation would be premature and would not be sufficient to accurately identify people at risk of fractures. It is likely that researchers will need to develop tests that involve studying the variants in several genes (and possibly other variants in the COL1A1 gene) and use them in combination with standard methods of risk assessment such as BMD measurements, before they can usefully predict a substantial fraction of an individual’s risk for osteoporosis.

Andrew Hyde | EurekAlert!
Further information:
http://www.plosmedicine.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>