Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First wolverine radio-collared in Pacific Northwest


First scientific study of wolverines ever conducted in the Pacific Northwest

The closest encounter most wildlife biologists have with wolverines in the Pacific Northwest is seeing a set of the animal’s tracks in the snow. But wildlife biologist Keith Aubry recently got the call he had eagerly anticipated for several weeks.

A member of his research team called from a site high in the northern Cascade Range of Washington to report that a wolverine had just been captured. Aubry, a carnivore expert and research wildlife biologist at the U.S. Forest Service Pacific Northwest Research Station in Olympia, Wash., and Jeff Copeland, a wolverine researcher with the Rocky Mountain Research Station in Missoula, Mont., rushed to the Methow Valley to fit the young female wolverine with a satellite radio collar to initiate the first scientific study of wolverines ever conducted in the Pacific Northwest.

Other members of the interagency team, including wildlife biologists John Rohrer of the Okanogan-Wenatchee National Forest and Scott Fitkin of the Washington Department of Fish and Wildlife (WDFW), traveled by snowmobile to a remote location south of the Pasayten Wilderness in Okanogan County. After immobilizing the wolverine with a sedative, Aubry and his team quickly went to work to evaluate the health of the animal, take measurements and tissue samples for genetic analyses, and install a radio collar to report her movements to Aubry via satellite for the next 18 months. "With this technology, we can now begin to gather reliable information on the movements, home range, and habitat of wolverines in the Pacific Northwest," said Aubry.

The wolverine is a Federal Sensitive Species and a Washington State Candidate Species for protective listing. Since the mid-1990s, biologists have documented the presence of wolverines in north-central Washington via aerial surveys, remote cameras, and winter tracking.

"What we learn about wolverines from this effort will help us determine the species’ status and management needs," said Rohrer, who is the project field coordinator for the Methow Valley Ranger District in Winthrop.

The capture is the culmination of several years of survey work in north-central Washington to document wolverine presence to begin to understand their habitat needs. "We know so little about these rarely seen animals that this is an exciting opportunity to learn more about their general ecology in the north Cascades," said Fitkin of WDFW.

Wolverines (Gulo gulo) weigh about 20 to 40 pounds, depending on sex and age, and are the largest land-based member of the mustelid family that includes weasels, badgers, and otters. They are primarily found in boreal forest and tundra habitats in the far north, but also occur in mountainous terrain at the southern end of their current range in the Cascades and Northern Rockies. They prey on everything from moose to mice, and often rely heavily on scavenging for food during winter.

"The young female wolverine we collared weighed about 19 pounds, and was in excellent health and condition. She hasn’t had kits yet, and is probably just a year old," said Aubry. "It’s likely that her parents and possibly siblings are in the same general area, so chances are good that we will collar additional individuals in the traps we’ve set."

Rohrer and Fitkin will continue to monitor three wolverine traps placed before snowfall in locations where wolverines had previously been detected. The log-cabin-style box traps have been set since mid-January, and are checked every day. They are baited with carrion and provide captured animals with a secure and comfortable space until they are released.

A key reason for conducting this research is the need to understand the wolverine’s habitat requirements in the Northwest and maintain the habitat without conflicting with other land uses. With help from satellites 600 miles overhead, Aubry hopes to follow wolverines in the north Cascades for at least 2 more years.

Sherri Richardson Dodge | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>