Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI drug may improve cancer-killing ability of chemotherapy, study says

15.02.2006


A contrast agent currently used in magnetic resonance imaging (MRI), called mangafodipir, may increase the cancer-killing ability of some chemotherapy drugs while protecting normal cells, according to a study in the February 15 issue of the Journal of the National Cancer Institute .



Many anticancer drugs work by increasing the levels of tumor cell hydrogen peroxide. Tumor cells are particularly sensitive to hydrogen peroxide and die as a result. However, certain enzymes in the body can work to protect cells from this kind of damage, rendering certain cancer drugs less effective. In addition, the drugs are toxic to normal cells. The drug mangafodipir, a contrast agent given to patients before they have an MRI, helps promote the production of hydrogen peroxide while at the same time, through different biologic mechanisms, protects healthy cells from the negative effects of oxidative damage.

Jérôme Alexandre, M.D., of the Groupe hospitalier Cochin-Saint Vincent de Paul in Paris, and colleagues exposed tumor cells and white blood cells from 10 cancer patients and white blood cells from six control subjects to three chemotherapy drugs--paclitaxel, oxaliplatin, and 5-fluorouracil--in the presence or absence of mangafodipir. They also studied the effects of mangafodipir on colon cancer cells in mice treated with paclitaxel.


The authors found that mangafodipir protected the white blood cells taken from healthy volunteers and from cancer patients. The drug also protected paclitaxel-treated mice from infection that would cause a lowered white blood cell count and helped increase the cancer cell-killing ability of the chemotherapy drug paclitaxel against the cancer cells in mice.

"Our results support investigation of the use of mangafodipir in cancer patients, because mangafodipir may enhance the therapeutic index of anticancer agents by both protecting normal cells and increasing antitumoral activity of these agents," the authors write. "The safety of mangafodipir administered as a contrast agent in magnetic resonance imaging has already been demonstrated."

In an accompanying editorial, James H. Doroshow, M.D., of the National Cancer Institute, suggests that clinical trials may be the next approach for studies of drugs such as mangafodipir that affect oxidative stress in tumor cells. He writes, "Overall, this study contributes to our rapidly developing understanding of tumor cell [oxidation-reduction] balance and to the possibility that therapeutic approaches to the modulation of oxidant-mediated growth control may be possible in the near future, perhaps with mangafodipir or with other [oxidation-reduction] modulators in development."

Ariel Whitworth | EurekAlert!
Further information:
http://www.oxfordjournals.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>