Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows reactivating single memory does not affect associated memories

15.02.2006


Researchers at a trio of universities have found that reactivating a specific memory does not affect associated or related memories, adding to our understanding of how memories are stored and influenced. The study appears in the latest issue of the Proceedings of the National Academy of Sciences.

The study’s authors are Jacek Debiec and Joseph LeDoux of New York University’s Center for Neural Science, Valérie Doyère of NYU and Université Paris-Sud, and Karim Nader, a psychology professor at McGill University.

Memories are made in stages. These initial stages involve learning followed by consolidation--a process during which the memory trace is formed. Unconsolidated memories are susceptible to disruption. Therefore, various pharmacological agents or interfering tasks applied before consolidation occurs prevent a memory from persisting. However, once consolidation occurs, memories may be long lasting--one experience may create memories that last a lifetime.



For years it had been believed that consolidated memories were resistant to drug manipulations, which are effective in the early stages of memory formation. However, increasing number of data indicate that reactivation of consolidated memories renders them susceptible to treatments, which may result in either impairment or enhancement of the reactivated memory. This process is often referred to as reconsolidation, which has been proposed as a possible way of treating traumatic memories. Yet, several concerns have been raised that reactivating and disrupting a single memory may also affect other associated memories. Debiec and colleagues found that only directly but not associatively reactivated memories are vulnerable to disruption.

The researchers investigated this process by testing laboratory rats. After demonstrating the presence of associated memories in the rats, the researchers tested how the reactivation of a single memory--in this case, the rats’ response to a mild electric shock that followed an audio tone--affected associated memories. They found that while the reactivated memory became subject to disruption, associated memories were not affected.

Experimental studies showing that reactivation of existing memories makes them susceptible to pharmacologic interventions raised hopes that reconsolidation may be used to treat debilitating traumatic memories, such as those that occur in post-traumatic stress disorder. However, several concerns have been raised. One of the most common worries is that manipulating with the reactivated memory may also affect other associated memories. The current study demonstrates that in animal models only directly reactivated but not associated memories are vulnerable to disruption. If confirmed in humans these results may the pave the way to developing novel treatments of intrusive traumatic memories.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>