Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows reactivating single memory does not affect associated memories

15.02.2006


Researchers at a trio of universities have found that reactivating a specific memory does not affect associated or related memories, adding to our understanding of how memories are stored and influenced. The study appears in the latest issue of the Proceedings of the National Academy of Sciences.

The study’s authors are Jacek Debiec and Joseph LeDoux of New York University’s Center for Neural Science, Valérie Doyère of NYU and Université Paris-Sud, and Karim Nader, a psychology professor at McGill University.

Memories are made in stages. These initial stages involve learning followed by consolidation--a process during which the memory trace is formed. Unconsolidated memories are susceptible to disruption. Therefore, various pharmacological agents or interfering tasks applied before consolidation occurs prevent a memory from persisting. However, once consolidation occurs, memories may be long lasting--one experience may create memories that last a lifetime.



For years it had been believed that consolidated memories were resistant to drug manipulations, which are effective in the early stages of memory formation. However, increasing number of data indicate that reactivation of consolidated memories renders them susceptible to treatments, which may result in either impairment or enhancement of the reactivated memory. This process is often referred to as reconsolidation, which has been proposed as a possible way of treating traumatic memories. Yet, several concerns have been raised that reactivating and disrupting a single memory may also affect other associated memories. Debiec and colleagues found that only directly but not associatively reactivated memories are vulnerable to disruption.

The researchers investigated this process by testing laboratory rats. After demonstrating the presence of associated memories in the rats, the researchers tested how the reactivation of a single memory--in this case, the rats’ response to a mild electric shock that followed an audio tone--affected associated memories. They found that while the reactivated memory became subject to disruption, associated memories were not affected.

Experimental studies showing that reactivation of existing memories makes them susceptible to pharmacologic interventions raised hopes that reconsolidation may be used to treat debilitating traumatic memories, such as those that occur in post-traumatic stress disorder. However, several concerns have been raised. One of the most common worries is that manipulating with the reactivated memory may also affect other associated memories. The current study demonstrates that in animal models only directly reactivated but not associated memories are vulnerable to disruption. If confirmed in humans these results may the pave the way to developing novel treatments of intrusive traumatic memories.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>