Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows reactivating single memory does not affect associated memories

15.02.2006


Researchers at a trio of universities have found that reactivating a specific memory does not affect associated or related memories, adding to our understanding of how memories are stored and influenced. The study appears in the latest issue of the Proceedings of the National Academy of Sciences.

The study’s authors are Jacek Debiec and Joseph LeDoux of New York University’s Center for Neural Science, Valérie Doyère of NYU and Université Paris-Sud, and Karim Nader, a psychology professor at McGill University.

Memories are made in stages. These initial stages involve learning followed by consolidation--a process during which the memory trace is formed. Unconsolidated memories are susceptible to disruption. Therefore, various pharmacological agents or interfering tasks applied before consolidation occurs prevent a memory from persisting. However, once consolidation occurs, memories may be long lasting--one experience may create memories that last a lifetime.



For years it had been believed that consolidated memories were resistant to drug manipulations, which are effective in the early stages of memory formation. However, increasing number of data indicate that reactivation of consolidated memories renders them susceptible to treatments, which may result in either impairment or enhancement of the reactivated memory. This process is often referred to as reconsolidation, which has been proposed as a possible way of treating traumatic memories. Yet, several concerns have been raised that reactivating and disrupting a single memory may also affect other associated memories. Debiec and colleagues found that only directly but not associatively reactivated memories are vulnerable to disruption.

The researchers investigated this process by testing laboratory rats. After demonstrating the presence of associated memories in the rats, the researchers tested how the reactivation of a single memory--in this case, the rats’ response to a mild electric shock that followed an audio tone--affected associated memories. They found that while the reactivated memory became subject to disruption, associated memories were not affected.

Experimental studies showing that reactivation of existing memories makes them susceptible to pharmacologic interventions raised hopes that reconsolidation may be used to treat debilitating traumatic memories, such as those that occur in post-traumatic stress disorder. However, several concerns have been raised. One of the most common worries is that manipulating with the reactivated memory may also affect other associated memories. The current study demonstrates that in animal models only directly reactivated but not associated memories are vulnerable to disruption. If confirmed in humans these results may the pave the way to developing novel treatments of intrusive traumatic memories.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>