Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows reactivating single memory does not affect associated memories

15.02.2006


Researchers at a trio of universities have found that reactivating a specific memory does not affect associated or related memories, adding to our understanding of how memories are stored and influenced. The study appears in the latest issue of the Proceedings of the National Academy of Sciences.

The study’s authors are Jacek Debiec and Joseph LeDoux of New York University’s Center for Neural Science, Valérie Doyère of NYU and Université Paris-Sud, and Karim Nader, a psychology professor at McGill University.

Memories are made in stages. These initial stages involve learning followed by consolidation--a process during which the memory trace is formed. Unconsolidated memories are susceptible to disruption. Therefore, various pharmacological agents or interfering tasks applied before consolidation occurs prevent a memory from persisting. However, once consolidation occurs, memories may be long lasting--one experience may create memories that last a lifetime.



For years it had been believed that consolidated memories were resistant to drug manipulations, which are effective in the early stages of memory formation. However, increasing number of data indicate that reactivation of consolidated memories renders them susceptible to treatments, which may result in either impairment or enhancement of the reactivated memory. This process is often referred to as reconsolidation, which has been proposed as a possible way of treating traumatic memories. Yet, several concerns have been raised that reactivating and disrupting a single memory may also affect other associated memories. Debiec and colleagues found that only directly but not associatively reactivated memories are vulnerable to disruption.

The researchers investigated this process by testing laboratory rats. After demonstrating the presence of associated memories in the rats, the researchers tested how the reactivation of a single memory--in this case, the rats’ response to a mild electric shock that followed an audio tone--affected associated memories. They found that while the reactivated memory became subject to disruption, associated memories were not affected.

Experimental studies showing that reactivation of existing memories makes them susceptible to pharmacologic interventions raised hopes that reconsolidation may be used to treat debilitating traumatic memories, such as those that occur in post-traumatic stress disorder. However, several concerns have been raised. One of the most common worries is that manipulating with the reactivated memory may also affect other associated memories. The current study demonstrates that in animal models only directly reactivated but not associated memories are vulnerable to disruption. If confirmed in humans these results may the pave the way to developing novel treatments of intrusive traumatic memories.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>