Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explains unexpected conductivity of nanoscale silicon

09.02.2006


When graduate student Pengpeng Zhang successfully imaged a piece of silicon just 10 nanometers-or a millionth of a centimeter-in thickness, she and her University of Wisconsin-Madison co-researchers were puzzled. According to established thinking, the feat should be impossible because her microscopy method required samples that conduct electricity.



"After she did it, we realized, ’Hey, this silicon layer is really thin-it’s much thinner than what people normally use,’" says UW-Madison physicist Mark Eriksson. "In fact, it’s thin enough that it should be very hard to run a current through it. So we began asking, ’Why is this working?’"

A team led by College of Engineering professors Paul Evans, Irena Knezevic and Max Lagally and physics professor Eriksson has now answered that question. Writing in the Feb. 9 issue of the journal Nature, they have shown that when the surface of nanoscale silicon is specially cleaned, the surface itself facilitates current flow in thin layers that ordinarily won’t conduct. In fact, conductivity at the nanoscale is completely independent of the added impurities, or dopants, that usually control silicon’s electrical properties, the team reports.


"What this tells us is that if you’re building nanostructures, the surface is really important," says Evans. "If you make silicon half as thick, you would expect it to conduct half as well. But it turns out that silicon conducts much worse than that if the surface is poorly prepared and much better than that if the surface is well prepared."

The results also mean that the powerful concepts, methods and instruments of silicon electronics honed by scientists and the semiconductor industry over decades - many of which require conductive samples, like the scanning tunneling microscopy method employed by Zhang - can also be used to explore the nanoworld.

"We’re working at the crossover between silicon electronics and nanoelectronics," says Evans. "This material is the same size as nanodevices like silicon nanowires and quantum dots. But now we can use the tools from silicon electronics we already have to probe it."

The team studied silicon-on-insulator substrates, in which a half-millimeter-thick silicon wafer is covered by a much thinner layer of insulating silicon oxide. Another silicon layer, in turn, tops the oxide layer. In the UW-Madison investigation, this uppermost layer was a "nanomembrane" just 10 nanometers thick. Silicon nanomembranes could one day become the platform for future high-speed electronics and a host of novel sensor technologies, says Lagally. But like all silicon, they naturally develop another unwanted layer of oxide on top when exposed to air, resulting in an oxide-silicon-oxide structure. And the usual means to drive off the top oxide-by heating the material to more than 1,200 degrees Celsius-causes nanomembranes to ball up.

What Zhang originally developed was a method to remove the top oxide without causing this damage. Under ultra-high vacuum, she slowly deposited several additional silicon or germanium layers, each just one atom thick, at 700 degrees C.

Scanning tunneling microscopy soon revealed that this process somehow allowed the nanomembrane to conduct electricity. To find out why, the team analyzed the resistance-the inverse of conductivity-of silicon layers ranging from to 200 to 15 nanometers in thickness. More importantly, they compared silicon’s resistance when sandwiched between two oxide layers-the usual case-and when cleaned of the top oxide and exposed to vacuum through Zhang’s method. Knezevic then created a model predicting resistance as a function of layer thickness in both situations.

Knezevic’s model indicates that in layers thinner than 100 nanometers, the properties of silicon itself become irrelevant: what matters is the surface. Even in relatively thick layers of 200 nanometers, silicon cleaned of the top oxide was at least 10 times more conductive than silicon sandwiched between oxide layers. And as layer thickness shrunk, this difference eventually grew to six orders of magnitude.

The team has proposed that cleaning promotes conductivity by creating new electronic states on the silicon surface where electrons can reside. States are to electrons what parking spaces are to cars. In silicon sandwiched between oxide layers, every parking space-indeed, the entire space of the lot-is jammed. With no empty spaces to move into, electrons are trapped in position and current can’t flow.

When new states open up on the surface due to cleaning, it’s as if another level of parking spaces has been added, and a small number of electrons jump to the new spots. What they leave behind in the bulk silicon are holes-empty spaces that other electrons can fill. As electrons move into these holes, additional holes are produced. In this way, the traffic jam breaks up and current begins to flow-all because of the surface.

"It’s an interesting interplay," says Eriksson. "You clean the surface so you can image it. But then the surface ends up enabling conductivity in the entire silicon layer."

Paul Evans | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>