Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study explains unexpected conductivity of nanoscale silicon

09.02.2006


When graduate student Pengpeng Zhang successfully imaged a piece of silicon just 10 nanometers-or a millionth of a centimeter-in thickness, she and her University of Wisconsin-Madison co-researchers were puzzled. According to established thinking, the feat should be impossible because her microscopy method required samples that conduct electricity.



"After she did it, we realized, ’Hey, this silicon layer is really thin-it’s much thinner than what people normally use,’" says UW-Madison physicist Mark Eriksson. "In fact, it’s thin enough that it should be very hard to run a current through it. So we began asking, ’Why is this working?’"

A team led by College of Engineering professors Paul Evans, Irena Knezevic and Max Lagally and physics professor Eriksson has now answered that question. Writing in the Feb. 9 issue of the journal Nature, they have shown that when the surface of nanoscale silicon is specially cleaned, the surface itself facilitates current flow in thin layers that ordinarily won’t conduct. In fact, conductivity at the nanoscale is completely independent of the added impurities, or dopants, that usually control silicon’s electrical properties, the team reports.


"What this tells us is that if you’re building nanostructures, the surface is really important," says Evans. "If you make silicon half as thick, you would expect it to conduct half as well. But it turns out that silicon conducts much worse than that if the surface is poorly prepared and much better than that if the surface is well prepared."

The results also mean that the powerful concepts, methods and instruments of silicon electronics honed by scientists and the semiconductor industry over decades - many of which require conductive samples, like the scanning tunneling microscopy method employed by Zhang - can also be used to explore the nanoworld.

"We’re working at the crossover between silicon electronics and nanoelectronics," says Evans. "This material is the same size as nanodevices like silicon nanowires and quantum dots. But now we can use the tools from silicon electronics we already have to probe it."

The team studied silicon-on-insulator substrates, in which a half-millimeter-thick silicon wafer is covered by a much thinner layer of insulating silicon oxide. Another silicon layer, in turn, tops the oxide layer. In the UW-Madison investigation, this uppermost layer was a "nanomembrane" just 10 nanometers thick. Silicon nanomembranes could one day become the platform for future high-speed electronics and a host of novel sensor technologies, says Lagally. But like all silicon, they naturally develop another unwanted layer of oxide on top when exposed to air, resulting in an oxide-silicon-oxide structure. And the usual means to drive off the top oxide-by heating the material to more than 1,200 degrees Celsius-causes nanomembranes to ball up.

What Zhang originally developed was a method to remove the top oxide without causing this damage. Under ultra-high vacuum, she slowly deposited several additional silicon or germanium layers, each just one atom thick, at 700 degrees C.

Scanning tunneling microscopy soon revealed that this process somehow allowed the nanomembrane to conduct electricity. To find out why, the team analyzed the resistance-the inverse of conductivity-of silicon layers ranging from to 200 to 15 nanometers in thickness. More importantly, they compared silicon’s resistance when sandwiched between two oxide layers-the usual case-and when cleaned of the top oxide and exposed to vacuum through Zhang’s method. Knezevic then created a model predicting resistance as a function of layer thickness in both situations.

Knezevic’s model indicates that in layers thinner than 100 nanometers, the properties of silicon itself become irrelevant: what matters is the surface. Even in relatively thick layers of 200 nanometers, silicon cleaned of the top oxide was at least 10 times more conductive than silicon sandwiched between oxide layers. And as layer thickness shrunk, this difference eventually grew to six orders of magnitude.

The team has proposed that cleaning promotes conductivity by creating new electronic states on the silicon surface where electrons can reside. States are to electrons what parking spaces are to cars. In silicon sandwiched between oxide layers, every parking space-indeed, the entire space of the lot-is jammed. With no empty spaces to move into, electrons are trapped in position and current can’t flow.

When new states open up on the surface due to cleaning, it’s as if another level of parking spaces has been added, and a small number of electrons jump to the new spots. What they leave behind in the bulk silicon are holes-empty spaces that other electrons can fill. As electrons move into these holes, additional holes are produced. In this way, the traffic jam breaks up and current begins to flow-all because of the surface.

"It’s an interesting interplay," says Eriksson. "You clean the surface so you can image it. But then the surface ends up enabling conductivity in the entire silicon layer."

Paul Evans | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>