Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark FSU study of hepatitis C virus solves mystery that has stymied quest for cure

08.02.2006


The hepatitis C virus (HCV) infects more than 170 million people worldwide and leads to both acute and chronic liver diseases. Since its discovery several decades ago, the insidious human pathogen has stymied the quest for anti-viral therapies by refusing to reproduce in test tubes for more than a few hours or days, denying scientists an efficient virus production and infection system for experimental research.



Now, in a landmark study by Florida State University biologists that could bolster the development of anti-viral therapies for HCV –– as well as for related RNA viruses such as West Nile and influenza –– Assistant Professor Hengli Tang and doctoral student/co-author Heather B. Nelson have discovered the molecular mechanism that inhibits HCV replication in vitro after its host cells become crowded and stopped dividing.

What’s more, their groundbreaking discovery came about as a result of the new test they developed that can quickly and easily monitor HCV replication in the laboratory.


Finally, after Tang and Nelson uncovered the reason for suppression of the virus in cell culture –– in a nutshell: not enough nucleotide molecules, the building blocks of HCV –– they then adapted an existing cell technology to remedy the problem right in the test tube.

The Tang-Nelson study and a description of the innovative technologies they devised to enable and track it will appear in the Feb. 8 edition of the Journal of Virology.

"Our findings could prove critical to research on HCV’s complex virus-host cell interactions and lead to better, targeted treatments," Tang said.

"Currently, any nucleotide starvation therapies, used primarily to treat cancer, can inhibit replication by depriving viral agents of their molecular building blocks. However, those therapies may impact healthy cells, as well, causing undesired side effects."

In the human liver, the parasitic HCV makes copies of its genetic material by hijacking nucleotides –– the little molecules produced by its dividing host cells. It is only in the liver that pools of nucleotides remain available to HCV in sufficient supply after the host cells reached confluence (stop dividing).

Not so in test tubes, say the FSU researchers.

To address the shortage of HCV building blocks in vitro, their unique adaptation of an existing cell technology enabled the introduction of nucleoside molecules to a culture of liver cancer cells. The nucleosides then converted to the essential nucleotide molecules that Tang calls the missing link. In turn, the nucleotides generated in vitro replication of infectious HCV particles that continued even after host cell confluence –– as it does in the liver.

That’s not all. "Our new cell line also allows us to rapidly identify and isolate drug-resistant HCV mutants in vitro and to screen for anti-viral drug candidates," Tang said. "This will help researchers better study the mechanism of drug resistance, a big problem with this virus and others such as HIV (human immunodeficiency virus) that mutate quickly."

Underpinning everything, Tang says, is their novel, easy-to-use assay. It can track mutant strains of HCV in a week or less while other assays take weeks or months.

"Our assay, for which FSU has filed a provisional patent application, employs a new reporter cell line, which means the cells give out a detectable signal when certain events happen inside them," said Tang. "In this case, they emit a green fluorescence whenever HVC is replicating. The fluorescence is tracked in the cell culture through a technique known as flow cytometry, which employs a machine equipped with a laser and lights that follows the green to find the virus."

Between earning his Ph.D. at the University of California-San Diego in 1998 and joining FSU’s biological science faculty in 2004, Tang served as a lead researcher in an industry setting, seeking targeted anti-viral therapies primarily for HIV.

"I find it particularly rewarding to play a part in research that may actually help somebody soon," he said.

Hengli Tang | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>