Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landmark FSU study of hepatitis C virus solves mystery that has stymied quest for cure

08.02.2006


The hepatitis C virus (HCV) infects more than 170 million people worldwide and leads to both acute and chronic liver diseases. Since its discovery several decades ago, the insidious human pathogen has stymied the quest for anti-viral therapies by refusing to reproduce in test tubes for more than a few hours or days, denying scientists an efficient virus production and infection system for experimental research.



Now, in a landmark study by Florida State University biologists that could bolster the development of anti-viral therapies for HCV –– as well as for related RNA viruses such as West Nile and influenza –– Assistant Professor Hengli Tang and doctoral student/co-author Heather B. Nelson have discovered the molecular mechanism that inhibits HCV replication in vitro after its host cells become crowded and stopped dividing.

What’s more, their groundbreaking discovery came about as a result of the new test they developed that can quickly and easily monitor HCV replication in the laboratory.


Finally, after Tang and Nelson uncovered the reason for suppression of the virus in cell culture –– in a nutshell: not enough nucleotide molecules, the building blocks of HCV –– they then adapted an existing cell technology to remedy the problem right in the test tube.

The Tang-Nelson study and a description of the innovative technologies they devised to enable and track it will appear in the Feb. 8 edition of the Journal of Virology.

"Our findings could prove critical to research on HCV’s complex virus-host cell interactions and lead to better, targeted treatments," Tang said.

"Currently, any nucleotide starvation therapies, used primarily to treat cancer, can inhibit replication by depriving viral agents of their molecular building blocks. However, those therapies may impact healthy cells, as well, causing undesired side effects."

In the human liver, the parasitic HCV makes copies of its genetic material by hijacking nucleotides –– the little molecules produced by its dividing host cells. It is only in the liver that pools of nucleotides remain available to HCV in sufficient supply after the host cells reached confluence (stop dividing).

Not so in test tubes, say the FSU researchers.

To address the shortage of HCV building blocks in vitro, their unique adaptation of an existing cell technology enabled the introduction of nucleoside molecules to a culture of liver cancer cells. The nucleosides then converted to the essential nucleotide molecules that Tang calls the missing link. In turn, the nucleotides generated in vitro replication of infectious HCV particles that continued even after host cell confluence –– as it does in the liver.

That’s not all. "Our new cell line also allows us to rapidly identify and isolate drug-resistant HCV mutants in vitro and to screen for anti-viral drug candidates," Tang said. "This will help researchers better study the mechanism of drug resistance, a big problem with this virus and others such as HIV (human immunodeficiency virus) that mutate quickly."

Underpinning everything, Tang says, is their novel, easy-to-use assay. It can track mutant strains of HCV in a week or less while other assays take weeks or months.

"Our assay, for which FSU has filed a provisional patent application, employs a new reporter cell line, which means the cells give out a detectable signal when certain events happen inside them," said Tang. "In this case, they emit a green fluorescence whenever HVC is replicating. The fluorescence is tracked in the cell culture through a technique known as flow cytometry, which employs a machine equipped with a laser and lights that follows the green to find the virus."

Between earning his Ph.D. at the University of California-San Diego in 1998 and joining FSU’s biological science faculty in 2004, Tang served as a lead researcher in an industry setting, seeking targeted anti-viral therapies primarily for HIV.

"I find it particularly rewarding to play a part in research that may actually help somebody soon," he said.

Hengli Tang | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>