Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain changes significantly after age 18

08.02.2006


Two Dartmouth researchers are one step closer to defining exactly when human maturity sets in. In a study aimed at identifying how and when a person’s brain reaches adulthood, the scientists have learned that, anatomically, significant changes in brain structure continue after age 18.



The study, called "Anatomical Changes in the Emerging Adult Brain," appeared in the Nov. 29, 2005, on-line issue of the journal Human Brain Mapping. It will appear in a forthcoming issue of the journal’s print edition.

Abigail Baird, Assistant Professor of Psychological and Brain Sciences and co-author of the study, explains that their finding is fascinating because the study closely tracked a group of freshman students throughout their first year of college. She says that this research contributes to the growing body of literature devoted to the period of human development between adolescence and adulthood.


"During the first year of college, especially at a residential college, students have many new experiences," says Baird. "They are faced with new cognitive, social, and emotional challenges. We thought it was important to document and learn from the changes taking place in their brains."

For the study, Baird and graduate student Craig Bennett looked at the brains of nineteen 18-year-old Dartmouth students who had moved more than 100 miles to attend college. A control group of 17 older students, ranging in age from 25 to 35, were also studied for comparison.

The results indicate that significant changes took place in the brains of these individuals. The changes were localized to regions of the brain known to integrate emotion and cognition. Specifically, these are areas that take information from our current body state and apply it for use in navigating the world.

"The brain of an 18-year-old college freshman is still far from resembling the brain of someone in their mid-twenties," says Bennett. "When do we reach adulthood? It might be much later than we traditionally think."

The study was funded by a grant from the National Institute of Child Health and Development.

Sue Knapp | EurekAlert!
Further information:
http://www.Dartmouth.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>