Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European study on future fusion power plants

08.02.2006


The recently completed "European Fusion Power Plant Conceptual Study" investigates the technical feasibility, the expected safety and environmental properties, and the cost of a future fusion power plant. The latest results in plasma physics, technology, and materials research provided the basis for the development of four different power plant models illuminating a wide spectrum of physical and technical possibilities. Analysis of their ecological and economic properties has confirmed favourable results of previous investigations: Present know how indicates that accidents with severe impact on the environment in a fusion power plant are impossible and permanent disposal of waste is not necessary with recycling. The price of electricity will be equivalent to that of other environmentally benign energy technologies.



The aim of fusion research is to reproduce the generation of energy by the sun in a power plant on earth by deriving energy from fusion of atomic nuclei. The fuel is an ionised low density gas, a "plasma", composed of the two hydrogen isotopes, deuterium and tritium. This fuel is confined in a magnetic field and heated to ignite the fusion fire. Above a temperature of 100 million degrees the plasma starts to "burn": The hydrogen nuclei fuse to form helium, thereby releasing neutrons and large quantities of energy. The possibility of a fusion fire providing energy is to be shown by the international ITER (Latin for "the way") test device with a generated fusion power of 500 megawatts. ITER was planned on the basis of the materials and technologies available today, which are not yet fully optimised for fusion. This is the objective of a parallel physics and technology programme. All of this work is preparatory to a demonstration power plant; commercial plants could then supply the grid from the middle of the century.

Four models for a future power plant


The aim of the "European Fusion Power Plant Conceptual Study" is to sound out the economic and ecological properties that can be expected of a future power plant, and the lines of development that afford the greatest prospects. The latest research results were therefore taken as a basis for investigating four different concepts for a fusion power plant: All four models have an electric power of about 1500 megawatts and are of the "tokamak" type like ITER. To illuminate a wide spectrum of physical and technical possibilities, they are each based on different extrapolations of present day plasma physics and technology reaching variously far into the future.

In relation to ITER models A and B are the least far reaching: The assumptions on plasma behaviour, e.g. stability of the plasma, are only about 30 per cent better than the very cautious estimates for ITER. Unlike in ITER, the building material is a low activation steel now being investigated in the European Fusion Programme. The biggest differences relate to technical components of the power plant, e.g. the so called "blanket": This lining of the plasma vessel serves to decelerate the fast neutrons resulting from the fusion process. These transfer their entire kinetic energy to a coolant in the form of heat and also produce tritium as fuel component from lithium.

For these purposes model A is furnished with a liquid metal blanket: It uses a liquid lithium lead mixture for tritium production, and the fusion heat is absorbed and transferred with water. In contrast, model B is fitted with a blanket filled with pebbles of lithium ceramic and beryllium. The helium coolant chosen here allows higher temperatures than water does – up to 500 instead of 300 degrees centigrade – and hence higher efficiencies for the subsequent power production. Both blanket versions are being developed in the European Fusion Programme; test versions are to be investigated in ITER.

Unlike models A and B, the more far reaching model C and the rather more futuristic model D are based on major progress being made in plasma physics. Improved plasma states are combined with more powerful blanket concepts; but these are already being developed in Europe: In the dual coolant blanket of model C the first wall is cooled with helium; most of the heat generated is transported to the heat exchanger by circulation of liquid metal. Silicon carbide inserts insulate the structure from the flowing liquid metal. The higher coolant temperature of about 700 degrees allows more efficient conversion of fusion heat to electricity. Even more advanced in model C is the use of a self cooling blanket, liquid metal (up to 1100 degrees) serving for both cooling and tritium production; the structures consist of silicon carbide.

Safety properties

Considerations of safety are concerned with the radioactive tritium and the high energy neutrons, which activate the walls of the plasma vessel. The consequences of all serious accidents were clarified by analysing the two more contemporary models A and B in greater detail: Sudden and total failure of the cooling system is assumed to cause the accident; the power plant is then left to its own devices without any intervention. Result: Plasma instabilities impairing the operating conditions immediately extinguish the burning process; the residual heat in the walls is not sufficient to impair components severely or even melt them. The power plant does not contain any other energy source that could destroy its containment, which thus always remains intact.

It was then investigated how much tritium and activated material could be mobilised by the temperature rise and escape from the plant. Finally, the resulting radioactive exposure at the power plant perimeter was determined for the most adverse weather conditions: Models A and B have values well below one to two orders of magnitude the dose necessitating evacuation of inhabitants in the vicinity of the power plant. This also applies to model C; the values for model D are much lower still. This new study thus confirms the attractive safety properties known from previous investigations.

Waste

The waste situation was also reconsidered: The material activated by fusion neutrons was found to lose its radioactivity relatively fast in all four models. In a hundred years it drops to a ten thousandth of its initial value. In model B, for example, almost half of the material is no longer radioactive a hundred years after shutdown and can be passed for any other use. The other half could – with the advent of appropriate technology – be recycled and re used in new power plants: Permanent storage would then not be necessary. This also applies to the other three models.

Questions of cost

From model A to D there is an increase in the efficiency with which fusion energy can be tapped from the blanket and – with rising coolant temperature – the efficiency of power production. In addition, the plasma states attained from A to D become more and more favourable: The load on the walls decreases and less electric power has to be fed back into the power plant to keep it supplied. From model A to D less and less fusion power is needed to produce about 1500 megawatts of electric power. Furthermore, the plasma volume decreases from model A to D by more than half, i.e. plants can be made more compact.

Accordingly, different electricity prices are expected with the four power plant models: Model A entails the highest cost of electricity, followed by models B and C; avant garde model D costs the least. Even B and C would, however, be competitive with power production costs of 5 to 10 cents per kilowatt hour.

Conclusion

On balance the study indicates that already the first generation of commercial fusion power plants – as represented by the two more contemporary models A and B, whose development does not call for any major advances in plasma physics and materials research – will afford favourable safety and environmental properties and will be an economic proposition. Models C and D show the great potential for further physical and technological improvement.

Isabella Milch | alfa
Further information:
http://www.ipp.mpg.de/eng/index.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>