Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Olfactory nerve cells expressing same receptor display a varied set of reactions


Findings help researchers revise models of mammalian sense of smell

Composite of olfactory neuron response to lyral odor. The background shows intact olfactory neuroepithelium containing MOR23 cells tagged with GFP (green fluorescent protein). The right upper corner shows dendritic knob and cilia from a single MOR23 neuron. The left lower corner shows the electrical responses over time of a single MOR23 cell to lyral, the ligand for MOR23, at different concentrations. (Credit: Xavier Grosmaitre and Minghong Ma, PhD, University of Pennsylvania School of Medicine)

In a mouse model, University of Pennsylvania School of Medicine researchers discovered that olfactory sensory neurons expressing the same receptor responded to a specific odor with an array of speeds and sensitivities, a phenomenon previously not detected in the mammalian sense of smell. The group published their findings this week in the online edition of the Proceedings of the National Academy of Sciences.

"We assumed that the sensory neurons that express the same receptor would respond to a specific odor in the same way," says senior author Minghong Ma, PhD, Assistant Professor of Neuroscience at Penn. "But in real biology, these olfactory neurons keep regenerating, and even though they all express the same receptor, they’re probably at different states of maturation, displaying different qualities. By knowing that olfactory neurons can respond differently, we’re adding another layer to understanding how the olfactory system receives outside information."

Ma’s group measured 53 different olfactory neurons that express the MOR23 odor receptor. As a group, the neurons reacted differently from one another in their response to lyral, an artificial odor used in fragrances and flavoring. After subjecting all cells to a short pulse (200-300 milliseconds) of lyral, the researchers measured the cells’ sensitivity to the odor. Some cells responded to very low concentrations of lyral; others, to higher concentrations. Regarding the cells’ reaction time, some neurons finished firing within 500 milliseconds, but for others, the response time was up to five seconds.

Detection of odor molecules depends on about 1000 different odor receptors in the rodent nose. Different sets of receptors respond to different sets of odors. To date, no one has been able to record electrical impulses from a specific subtype of olfactory sensory neuron expressing a known receptor. This is important, says Ma, because prior to this paper, when researchers would work with olfactory cells, there was no way to know what odor receptor that cell expressed. "It could literally be one out of 1000," she says.

All the sensory neurons expressing the same receptor merge to a common region called a glomerulus, a region in the brain’s olfactory bulb. In one bulb there are about 2000 glomeruli. (The brain has two olfactory bulbs.) There are thousands of sensory neurons dedicated to expressing the same receptor, and in the case of MOR23 they all merge to two glomeruli.

The researchers used genetically engineered mice that express MOR23 together with green fluorescent protein (GFP), which was generated by colleagues from Rockefeller University. The GFP allows the investigators to visualize the MOR23 cells separate from other neurons. They also recorded their measurements using cells still intact within the lining of the nose, which allows the researchers to study these cells in their natural biochemical environment.

The researchers made their measurements from the endings of olfactory neuron dendrites. A single dendrite extends from the cell body of the olfactory neuron into the nasal cavity. The dendrite has a swelling at the end called the knob, where about 10 to 15 hair-like extensions called cilia contain the odor receptors.

Ma and colleagues are now working out the implications of their findings. She says this study points to a more finely tuned response in the brain to odors than previously thought. "Olfactory neurons may be able to respond to an even wider range of odor concentrations than we realized," she says. The heterogeneity in odor sensitivity and the wide response range in single cells provides new insights into why mammals, including humans, perceive odors with unchanged quality over a broad concentration range.

Karen Kreeger | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>