Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside researchers identify clay as major contributor to oxygen that enabled early animal life

03.02.2006


Study suggests steps a planet must go through for complex animal life to arise



Clay made animal life possible on Earth, a UC Riverside-led study finds. A sudden increase in oxygen in the Earth’s recent geological history, widely considered necessary for the expansion of animal life, occurred just as the rate of clay formation on the Earth’s surface also increased, the researchers report.

"Our study shows for the first time that the initial soils covering the terrestrial surface of Earth increased the production of clay minerals and provided the critical geochemical processes necessary to oxygenate the atmosphere and support multicellular animal life," said Martin Kennedy, an associate professor of sedimentary geology and geochemistry at UCR, who led the study.


Study results appear in the Feb. 2 issue of Science Express, which provides electronic publication of selected Science papers in advance of print.

Analyzing old sedimentary rocks, the researchers found evidence of an increase in clay mineral deposition in the oceans during a 200 million year period that fell between 1.1 to 0.54 billion years ago – a stretch of time known as the late Precambrian when oxygen suddenly increased in the Earth’s atmosphere. The increases in clay formation and oxygen shortly preceded – in geological time – the first animal fossils about 600 million years ago.

"This study shows how we can use principles developed from the study of modern environments to understand the very complex origin of life on our planet – studying a time in history that has left us only a scanty record of its conditions," said Lawrence M. Mayer, a professor of oceanography at the University of Maine and a co-author of the Science paper.

Clay minerals form in soils through biological interactions with weathering rocks and are then eroded and flushed to the sea, where they are deposited as mud. Because clay minerals are chemically reactive, they attract and absorb organic matter in ocean water, and physically shelter and preserve it.

The UCR-led study emphasizes the possibility that colonization of the land surface by a primitive terrestrial ecosystem (possibly involving fungi) accelerated clay formation, as happens in modern soils. Upon being washed down to the sea, the clay minerals were responsible for preserving more organic matter in marine sediments than had been the case in the absence of clays. Organic matter preservation results in an equal portion of oxygen released to the atmosphere through the chemical reaction of photosynthesis. Thus an increase in the burial of organic carbon made it possible for more oxygen to escape into the atmosphere, the researchers posit.

"One of the things we least understand is why animals evolved so late in Earth history," Kennedy said. "Why did animals wait until the eleventh hour, whereas evidence for more primitive life dates back to billions of years? One of the best bets to explain the difference is an increase in oxygen concentration in the atmosphere, which is necessary for animal life and was likely too low through most of Earth’s history."

To establish a change in clay abundance during the late Precambrian, the researchers studied thick sections of ancient sedimentary rocks in Australia, China and Scandinavia, representing a history of hundreds of millions of years, to identify when clay minerals increased in the sediment from almost nothing to modern depositional levels.

"We predicted we would only find a significant percentage of clay minerals in sediments toward the end of the Precambrian, when complex life arose, while earlier sediments would have less clay content," Kennedy said. "This test is easier than it sounds. Because clay minerals make up the bulk of sediment deposited today, we are saying that it should be largely absent in ancient rocks. And this is just what one finds."

The study attracted the attention of the National Aeronautics and Space Administration during the proposal stage, and the agency helped fund the research.

"NASA is interested in what conditions to look for on other planets that might lead to the arrival of life," Kennedy said. "What are the processes? Using Earth as our most detailed study site, what are the necessary steps a planet needs to go through to enable complex animal life to arise? If oxygen is the metabolic pathway, then we need to know what conditions have to allow for that to happen. The geologic record provides us with a record of these steps that occurred on Earth."

Iqbal Pittalwala | EurekAlert!
Further information:
http://ww.ucr.edu
http://www.mediasources.ucr.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>