Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside researchers identify clay as major contributor to oxygen that enabled early animal life

03.02.2006


Study suggests steps a planet must go through for complex animal life to arise



Clay made animal life possible on Earth, a UC Riverside-led study finds. A sudden increase in oxygen in the Earth’s recent geological history, widely considered necessary for the expansion of animal life, occurred just as the rate of clay formation on the Earth’s surface also increased, the researchers report.

"Our study shows for the first time that the initial soils covering the terrestrial surface of Earth increased the production of clay minerals and provided the critical geochemical processes necessary to oxygenate the atmosphere and support multicellular animal life," said Martin Kennedy, an associate professor of sedimentary geology and geochemistry at UCR, who led the study.


Study results appear in the Feb. 2 issue of Science Express, which provides electronic publication of selected Science papers in advance of print.

Analyzing old sedimentary rocks, the researchers found evidence of an increase in clay mineral deposition in the oceans during a 200 million year period that fell between 1.1 to 0.54 billion years ago – a stretch of time known as the late Precambrian when oxygen suddenly increased in the Earth’s atmosphere. The increases in clay formation and oxygen shortly preceded – in geological time – the first animal fossils about 600 million years ago.

"This study shows how we can use principles developed from the study of modern environments to understand the very complex origin of life on our planet – studying a time in history that has left us only a scanty record of its conditions," said Lawrence M. Mayer, a professor of oceanography at the University of Maine and a co-author of the Science paper.

Clay minerals form in soils through biological interactions with weathering rocks and are then eroded and flushed to the sea, where they are deposited as mud. Because clay minerals are chemically reactive, they attract and absorb organic matter in ocean water, and physically shelter and preserve it.

The UCR-led study emphasizes the possibility that colonization of the land surface by a primitive terrestrial ecosystem (possibly involving fungi) accelerated clay formation, as happens in modern soils. Upon being washed down to the sea, the clay minerals were responsible for preserving more organic matter in marine sediments than had been the case in the absence of clays. Organic matter preservation results in an equal portion of oxygen released to the atmosphere through the chemical reaction of photosynthesis. Thus an increase in the burial of organic carbon made it possible for more oxygen to escape into the atmosphere, the researchers posit.

"One of the things we least understand is why animals evolved so late in Earth history," Kennedy said. "Why did animals wait until the eleventh hour, whereas evidence for more primitive life dates back to billions of years? One of the best bets to explain the difference is an increase in oxygen concentration in the atmosphere, which is necessary for animal life and was likely too low through most of Earth’s history."

To establish a change in clay abundance during the late Precambrian, the researchers studied thick sections of ancient sedimentary rocks in Australia, China and Scandinavia, representing a history of hundreds of millions of years, to identify when clay minerals increased in the sediment from almost nothing to modern depositional levels.

"We predicted we would only find a significant percentage of clay minerals in sediments toward the end of the Precambrian, when complex life arose, while earlier sediments would have less clay content," Kennedy said. "This test is easier than it sounds. Because clay minerals make up the bulk of sediment deposited today, we are saying that it should be largely absent in ancient rocks. And this is just what one finds."

The study attracted the attention of the National Aeronautics and Space Administration during the proposal stage, and the agency helped fund the research.

"NASA is interested in what conditions to look for on other planets that might lead to the arrival of life," Kennedy said. "What are the processes? Using Earth as our most detailed study site, what are the necessary steps a planet needs to go through to enable complex animal life to arise? If oxygen is the metabolic pathway, then we need to know what conditions have to allow for that to happen. The geologic record provides us with a record of these steps that occurred on Earth."

Iqbal Pittalwala | EurekAlert!
Further information:
http://ww.ucr.edu
http://www.mediasources.ucr.edu/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>