Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside researchers identify clay as major contributor to oxygen that enabled early animal life

03.02.2006


Study suggests steps a planet must go through for complex animal life to arise



Clay made animal life possible on Earth, a UC Riverside-led study finds. A sudden increase in oxygen in the Earth’s recent geological history, widely considered necessary for the expansion of animal life, occurred just as the rate of clay formation on the Earth’s surface also increased, the researchers report.

"Our study shows for the first time that the initial soils covering the terrestrial surface of Earth increased the production of clay minerals and provided the critical geochemical processes necessary to oxygenate the atmosphere and support multicellular animal life," said Martin Kennedy, an associate professor of sedimentary geology and geochemistry at UCR, who led the study.


Study results appear in the Feb. 2 issue of Science Express, which provides electronic publication of selected Science papers in advance of print.

Analyzing old sedimentary rocks, the researchers found evidence of an increase in clay mineral deposition in the oceans during a 200 million year period that fell between 1.1 to 0.54 billion years ago – a stretch of time known as the late Precambrian when oxygen suddenly increased in the Earth’s atmosphere. The increases in clay formation and oxygen shortly preceded – in geological time – the first animal fossils about 600 million years ago.

"This study shows how we can use principles developed from the study of modern environments to understand the very complex origin of life on our planet – studying a time in history that has left us only a scanty record of its conditions," said Lawrence M. Mayer, a professor of oceanography at the University of Maine and a co-author of the Science paper.

Clay minerals form in soils through biological interactions with weathering rocks and are then eroded and flushed to the sea, where they are deposited as mud. Because clay minerals are chemically reactive, they attract and absorb organic matter in ocean water, and physically shelter and preserve it.

The UCR-led study emphasizes the possibility that colonization of the land surface by a primitive terrestrial ecosystem (possibly involving fungi) accelerated clay formation, as happens in modern soils. Upon being washed down to the sea, the clay minerals were responsible for preserving more organic matter in marine sediments than had been the case in the absence of clays. Organic matter preservation results in an equal portion of oxygen released to the atmosphere through the chemical reaction of photosynthesis. Thus an increase in the burial of organic carbon made it possible for more oxygen to escape into the atmosphere, the researchers posit.

"One of the things we least understand is why animals evolved so late in Earth history," Kennedy said. "Why did animals wait until the eleventh hour, whereas evidence for more primitive life dates back to billions of years? One of the best bets to explain the difference is an increase in oxygen concentration in the atmosphere, which is necessary for animal life and was likely too low through most of Earth’s history."

To establish a change in clay abundance during the late Precambrian, the researchers studied thick sections of ancient sedimentary rocks in Australia, China and Scandinavia, representing a history of hundreds of millions of years, to identify when clay minerals increased in the sediment from almost nothing to modern depositional levels.

"We predicted we would only find a significant percentage of clay minerals in sediments toward the end of the Precambrian, when complex life arose, while earlier sediments would have less clay content," Kennedy said. "This test is easier than it sounds. Because clay minerals make up the bulk of sediment deposited today, we are saying that it should be largely absent in ancient rocks. And this is just what one finds."

The study attracted the attention of the National Aeronautics and Space Administration during the proposal stage, and the agency helped fund the research.

"NASA is interested in what conditions to look for on other planets that might lead to the arrival of life," Kennedy said. "What are the processes? Using Earth as our most detailed study site, what are the necessary steps a planet needs to go through to enable complex animal life to arise? If oxygen is the metabolic pathway, then we need to know what conditions have to allow for that to happen. The geologic record provides us with a record of these steps that occurred on Earth."

Iqbal Pittalwala | EurekAlert!
Further information:
http://ww.ucr.edu
http://www.mediasources.ucr.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>