Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fork in memory lane: UCSD research indicates hippocampus supports two aspects of recognition

02.02.2006


Anyone who has recognized a person but then struggled with the particulars – "I know I know her, but how…?" – can also appreciate the distinction between "familiarity" and "recollection."

Recollection, as defined by memory specialists, is the ability to call up specific details about an encounter, while familiarity is simply knowing that someone or something has been encountered before. Both are elements of recognition memory and both, new research suggests, are functions of the brain’s hippocampus.

Published in the Feb. 2 issue of the journal Neuron, the University of California, San Diego study contradicts a recent body of work which maintains that the hippocampus is involved only in recollection.



Led by senior researchers John Wixted, chair of the UCSD psychology department, and Larry Squire, a professor of psychiatry and neurosciences at the UCSD School of Medicine and the San Diego Veterans Affairs Health System, the study addresses one of the central debates in the neuroanatomy of memory.

A seahorse-shaped structure in the left and right medial temporal lobes of the brain, the hippocampus has long been known as a critical area for processing memory. Memory is impaired, often severely, in people whose hippocampi have been damaged by trauma or disease – by Alzheimer’s, for example, or oxygen deprivation following a heart attack.

The details of hippocampal function, however, are hotly contested in scientific circles.

"It is important to be able to assign a process to a specific region of the brain, but it is also intoxicating…," Wixted said. "Psychologists and neuroscientists have jumped at the notion that the hippocampus is critical only for the recollection component of recognition and that the adjacent cortical areas take care of familiarity only. But our findings suggest that conclusion might have been premature."

The study compared six memory-impaired patients with discrete hippocampal damage – that is, patients whose brain damage was localized to the hippocampus, as determined by magnetic resonance imaging (MRI) and other techniques – to an age-matched control group.

Subjects were tested with standard verbal tests of recognition memory. They were given lists of common words to study and after a short interval (three minutes filled with chit-chat) were then given test lists composed of both new and old words. For each word on the recognition test, the subjects were asked to rate their confidence that the word was old or new.

Results were analyzed with the receiver operating characteristic (ROC) curve, a statistical tool widely used to evaluate the accuracy of a classifier. In this case, the ROC curves are confidence plots where the points are derived from rates of true-positive versus false-positive answers (saying "yes" correctly to a word that was on the previous list v. saying "yes" incorrectly to a word that wasn’t).

Some theories of recognition, said Wixted, an expert on signal-detection models of memory, hold that the shape of the ROC is significant: A symmetric curve indicates that only the process of familiarity is involved, while an asymmetric curve indicates that both familiarity and recollection are at work. Also, the greater the asymmetry, the more significant the role of recollection.

After controlling for memory strength – by testing the brain-damaged patients, who have diminished abilities, with shorter (and therefore easier) word lists than those given to controls – the recognition accuracy of both groups was almost identical. Critically, once accuracy was equated, the asymmetry of the ROC curves was identical as well.

This is the first ROC study, Wixted noted, to age-match the subjects and to "strengthen" the memories of the hippocampal patients so that their ROCs could be meaningfully compared to that of the controls. The similarity of the ROCs suggests that recollection is operative even in patients with extensive hippocampal damage.

"The simple idea that these processes can be dichotomized and assigned to separate brain structures is challenged by our results. Both processes appear to be supported by the hippocampus and by the structures in the adjacent parahippocampal gyrus," the researchers write.

"This work is helping us piece together how the brain accomplishes learning and memory," Squire said, "and this is important in efforts to develop treatments for memory disorders."

The paper is titled "The Hippocampus Supports Both the Recollection and the Familiarity Components of Recognition Memory."

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>