Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Omega-6 fats cause prostate tumors to grow twice as fast

01.02.2006


Fatty acids such as those found in corn oil turn on genes that stimulate tumor growth



Omega-6 fatty acids--such as those found in corn oil--caused human prostate tumors in cell culture to grow twice as quickly as tumors to which omega-6 fats had not been added, according to a study conducted at the San Francisco VA Medical Center.

An omega-6 fatty acid known as arachidonic acid turns on a gene signaling pathway that leads directly to tumor growth, according to principal investigator Millie Hughes-Fulford, PhD, director of the Laboratory of Cell Growth at SFVAMC and scientific advisor to the U.S. Under Secretary for Health for the Department of Veterans Affairs.


The results of the study are published in the February 1 issue of Cancer Research.

"After we added omega-6 fatty acids to the growth medium in the dish, and only omega-6, we observed that tumors grew twice as fast as those without omega-6," recounts Hughes-Fulford, who is also an adjunct professor of medicine at the University of California, San Francisco.

"Investigating the reasons for this rapid growth, we discovered that the omega-6 was turning on a dozen inflammatory genes that are known to be important in cancer. We then asked what was turning on those genes, and found that omega-6 fatty acids actually turn on a signal pathway called PI3-kinase that is known to be a key player in cancer," she adds.

Hughes-Fulford says the results are significant because of the high level of omega-6 fatty acids in the modern American diet, mostly in the form of vegetable seed oils such as corn oil--over 25 times the level of beneficial omega-3 fatty acids, which are found in canola oil, fish, and green vegetables. She notes that over the last 60 years, the rate of prostate cancer in the U.S. has increased steadily along with intake of omega-6, suggesting a possible link between diet and prostate cancer.

The study results build on earlier work in which Fulford and her research team found that arachidonic acid stimulated the production of an enzyme known as cPLA-2, which in turn caused a chain of biochemical reactions that led to tumor growth. In the current paper, the researchers have "followed that biochemical cascade upstream to its source," Hughes-Fulford says. "These fatty acids are initiating the signal pathway that begins the whole cascade."

Hughes-Fulford and her fellow researchers also found that if they added a non-steroidal antiflammatory or a PI3K inhibitor to the growth media, interrupting the signal pathway, the genes did not get turned on and increased tumor cell growth did not take place.

Currently, Hughes-Fulford is conducting a study in which research animals are fed diets with different levels of omega-3 and omega-6 fatty acids, "to see how the tumors grow in animals."

Hughes-Fulford says that her study results have directly influenced her own diet. "I’m not a physician, and do not tell people how to eat, but I can tell you what I do in my own home," she says. "I use only canola oil and olive oil. We do not eat deep-fried foods."

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu/
http://www.ncire.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>